Suppr超能文献

深度学习在基于 MRI 的皮下和筋膜下组织容积标准化定量测量中的应用:用于脂肪水肿和淋巴水肿患者。

Deep learning for standardized, MRI-based quantification of subcutaneous and subfascial tissue volume for patients with lipedema and lymphedema.

机构信息

Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.

出版信息

Eur Radiol. 2023 Feb;33(2):884-892. doi: 10.1007/s00330-022-09047-0. Epub 2022 Aug 17.

Abstract

OBJECTIVES

To contribute to a more in-depth assessment of shape, volume, and asymmetry of the lower extremities in patients with lipedema or lymphedema utilizing volume information from MR imaging.

METHODS

A deep learning (DL) pipeline was developed including (i) localization of anatomical landmarks (femoral heads, symphysis, knees, ankles) and (ii) quality-assured tissue segmentation to enable standardized quantification of subcutaneous (SCT) and subfascial tissue (SFT) volumes. The retrospectively derived dataset for method development consisted of 45 patients (42 female, 44.2 ± 14.8 years) who underwent clinical 3D DIXON MR-lymphangiography examinations of the lower extremities. Five-fold cross-validated training was performed on 16,573 axial slices from 40 patients and testing on 2187 axial slices from 5 patients. For landmark detection, two EfficientNet-B1 convolutional neural networks (CNNs) were applied in an ensemble. One determines the relative foot-head position of each axial slice with respect to the landmarks by regression, the other identifies all landmarks in coronal reconstructed slices using keypoint detection. After landmark detection, segmentation of SCT and SFT was performed on axial slices employing a U-Net architecture with EfficientNet-B1 as encoder. Finally, the determined landmarks were used for standardized analysis and visualization of tissue volume, distribution, and symmetry, independent of leg length, slice thickness, and patient position.

RESULTS

Excellent test results were observed for landmark detection (z-deviation = 4.5 ± 3.1 mm) and segmentation (Dice score: SCT = 0.989 ± 0.004, SFT = 0.994 ± 0.002).

CONCLUSIONS

The proposed DL pipeline allows for standardized analysis of tissue volume and distribution and may assist in diagnosis of lipedema and lymphedema or monitoring of conservative and surgical treatments.

KEY POINTS

• Efficient use of volume information that MRI inherently provides can be extracted automatically by deep learning and enables in-depth assessment of tissue volumes in lipedema and lymphedema. • The deep learning pipeline consisting of body part regression, keypoint detection, and quality-assured tissue segmentation provides detailed information about the volume, distribution, and asymmetry of lower extremity tissues, independent of leg length, slice thickness, and patient position.

摘要

目的

利用磁共振成像(MR 成像)的体积信息,为脂肪水肿或淋巴水肿患者的下肢形态、体积和不对称性提供更深入的评估。

方法

开发了一个深度学习(DL)管道,包括(i)解剖学标志(股骨头、耻骨联合、膝关节、踝关节)的定位和(ii)质量保证的组织分割,以实现皮下组织(SCT)和筋膜下组织(SFT)体积的标准化定量。方法开发的回顾性数据集包括 45 名患者(42 名女性,44.2±14.8 岁)的下肢临床 3D DIXON MR 淋巴管造影检查。对 40 名患者的 16573 个轴向切片进行了五重交叉验证训练,对 5 名患者的 2187 个轴向切片进行了测试。对于标志点检测,应用了两个高效网络(EfficientNet-B1)卷积神经网络(CNN)进行集成。一个通过回归确定每个轴向切片相对于标志点的相对足-头位置,另一个使用关键点检测在冠状重建切片中识别所有标志点。标志点检测后,采用 U-Net 架构,利用 EfficientNet-B1 作为编码器,对 SCT 和 SFT 进行分割。最后,使用确定的标志点进行组织体积、分布和对称性的标准化分析和可视化,与腿长、切片厚度和患者体位无关。

结果

标志点检测(z 偏差=4.5±3.1mm)和分割(Dice 得分:SCT=0.989±0.004,SFT=0.994±0.002)的测试结果非常好。

结论

提出的 DL 管道允许对组织体积和分布进行标准化分析,可能有助于脂肪水肿和淋巴水肿的诊断或保守和手术治疗的监测。

关键点

• 可以通过深度学习自动提取 MRI 固有的体积信息,从而对脂肪水肿和淋巴水肿患者的组织体积进行深入评估。• 由身体部位回归、关键点检测和质量保证的组织分割组成的深度学习管道提供了下肢组织体积、分布和不对称性的详细信息,与腿长、切片厚度和患者体位无关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验