Suppr超能文献

自闭症谱系障碍青少年接受短暂正念冥想训练后的定量脑电图变化。

Quantitative EEG Changes in Youth With ASD Following Brief Mindfulness Meditation Exercise.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:2395-2405. doi: 10.1109/TNSRE.2022.3199151. Epub 2022 Sep 2.

Abstract

Mindfulness has growing empirical support for improving emotion regulation in individuals with Autism Spectrum Disorder (ASD). Mindfulness is cultivated through meditation practices. Assessing the role of mindfulness in improving emotion regulation is challenging given the reliance on self-report tools. Electroencephalography (EEG) has successfully quantified neural responses to emotional arousal and meditation in other populations, making it ideal to objectively measure neural responses before and after mindfulness (MF) practice among individuals with ASD. We performed an EEG-based analysis during a resting state paradigm in 35 youth with ASD. Specifically, we developed a machine learning classifier and a feature and channel selection approach that separates resting states preceding (Pre-MF) and following (Post-MF) a mindfulness meditation exercise within participants. Across individuals, frontal and temporal channels were most informative. Total power in the beta band (16-30 Hz), Total power (4-30 Hz), relative power in alpha band (8-12 Hz) were the most informative EEG features. A classifier using a non-linear combination of selected EEG features from selected channel locations separated Pre-MF and Post-MF resting states with an average accuracy, sensitivity, and specificity of 80.76%, 78.24%, and 82.14% respectively. Finally, we validated that separation between Pre-MF and Post-MF is due to the MF prime rather than linear-temporal drift. This work underscores machine learning as a critical tool for separating distinct resting states within youth with ASD and will enable better classification of underlying neural responses following brief MF meditation.

摘要

正念在改善自闭症谱系障碍(ASD)个体的情绪调节方面得到了越来越多的实证支持。正念是通过冥想练习培养的。由于依赖自我报告工具,评估正念在改善情绪调节方面的作用具有挑战性。脑电图(EEG)已成功量化了其他人群对情绪唤醒和冥想的神经反应,使其成为在 ASD 个体中客观测量正念(MF)练习前后神经反应的理想方法。我们在 35 名 ASD 青少年中进行了基于 EEG 的静息状态范式分析。具体来说,我们开发了一种机器学习分类器和一种特征和通道选择方法,该方法可在参与者内部将正念冥想练习之前(Pre-MF)和之后(Post-MF)的静息状态分开。在个体之间,额叶和颞叶通道最具信息量。β波段(16-30 Hz)的总功率、总功率(4-30 Hz)、α波段(8-12 Hz)的相对功率是最具信息量的 EEG 特征。使用从选定通道位置选择的 EEG 特征的非线性组合的分类器,以 80.76%、78.24%和 82.14%的平均准确度、灵敏度和特异性分别分离 Pre-MF 和 Post-MF 静息状态。最后,我们验证了 Pre-MF 和 Post-MF 之间的分离是由于 MF 引发,而不是线性时间漂移。这项工作强调了机器学习作为分离 ASD 青少年内不同静息状态的关键工具,并将能够更好地分类短暂 MF 冥想后的潜在神经反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc29/9979338/201382e90a4e/nihms-1834258-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验