IEEE J Biomed Health Inform. 2022 Nov;26(11):5482-5493. doi: 10.1109/JBHI.2022.3199199. Epub 2022 Nov 10.
Estimating physiological parameters - such as blood pressure (BP) - from raw sensor data captured by noninvasive, wearable devices rely on either burdensome manual feature extraction designed by domain experts to identify key waveform characteristics and phases, or deep learning (DL) models that require extensive data collection. We propose the Data-Driven Guided Attention (DDGA) framework to optimize DL models to learn features supported by the underlying physiology and physics of the captured waveforms, with minimal expert annotation. With only a single template waveform cardiac cycle and its labelled fiducial points, we leverage dynamic time warping (DTW) to annotate all other training samples. DL models are trained to first identify them before estimating BP to inform them which regions of the input represent key phases of the cardiac cycle, yet we still grant the flexibility for DL to determine the optimal feature set from them. In this study, we evaluate DDGA's improvements to a BP estimation task for three prominent DL-based architectures with two datasets: 1) the MIMIC-III waveform dataset with ample training data and 2) a bio-impedance (Bio-Z) dataset with less than abundant training data. Experiments show that DDGA improves personalized BP estimation models by an average 8.14% in root mean square error (RMSE) when there is an imbalanced distribution of target values in a training set and improves model generalizability by an average 4.92% in RMSE when testing estimation of BP value ranges not previously seen in training.
从非侵入性、可穿戴设备捕获的原始传感器数据中估计生理参数(如血压 (BP)),依赖于专家设计的繁琐手动特征提取,或者依赖于需要大量数据收集的深度学习 (DL) 模型。我们提出了数据驱动引导注意 (DDGA) 框架,以优化 DL 模型,使其学习到捕获波形的基础生理学和物理学支持的特征,而无需专家进行大量注释。仅使用单个模板波形心动周期及其标记的基准点,我们利用动态时间规整 (DTW) 对所有其他训练样本进行注释。DL 模型首先经过训练以识别它们,然后再估计 BP,以告知它们输入的哪些区域代表心动周期的关键阶段,但我们仍然允许 DL 从它们中确定最佳特征集。在这项研究中,我们评估了 DDGA 对基于三个知名 DL 架构的 BP 估计任务的改进,这些架构使用了两个数据集:1)具有丰富训练数据的 MIMIC-III 波形数据集,2)具有较少训练数据的生物阻抗 (Bio-Z) 数据集。实验表明,当训练集中目标值的分布不平衡时,DDGA 可以将个性化 BP 估计模型的均方根误差 (RMSE) 平均提高 8.14%,并且当测试中估计未在训练中看到的 BP 值范围时,模型的泛化能力平均提高 4.92%。