Suppr超能文献

用于PPG信号综合特征提取的增强型SpringDTW算法

Boosted-SpringDTW for Comprehensive Feature Extraction of PPG Signals.

作者信息

Martinez Jonathan, Sel Kaan, Mortazavi Bobak J, Jafari Roozbeh

机构信息

Department of Computer Science and EngineeringTexas A&M University College Station TX 77840 USA.

Department of Electrical and Computer EngineeringTexas A&M University College Station TX 77840 USA.

出版信息

IEEE Open J Eng Med Biol. 2022 May 12;3:78-85. doi: 10.1109/OJEMB.2022.3174806. eCollection 2022.

Abstract

: To achieve high-quality comprehensive feature extraction from physiological signals that enables precise physiological parameter estimation despite evolving waveform morphologies. : We propose Boosted-SpringDTW, a probabilistic framework that leverages dynamic time warping (DTW) and minimal domain-specific heuristics to simultaneously segment physiological signals and identify fiducial points that represent cardiac events. An automated dynamic template adapts to evolving waveform morphologies. We validate Boosted-SpringDTW performance with a benchmark PPG dataset whose morphologies include subject- and respiratory-induced variation. : Boosted-SpringDTW achieves precision, recall, and F1-scores over 0.96 for identifying fiducial points and mean absolute error values less than 11.41 milliseconds when estimating IBI. : Boosted-SpringDTW improves F1-Scores compared to two baseline feature extraction algorithms by 35% on average for fiducial point identification and mean percent difference by 16% on average for IBI estimation. : Precise hemodynamic parameter estimation with wearable devices enables continuous health monitoring throughout a patients' daily life.

摘要

为了从生理信号中实现高质量的综合特征提取,从而能够在波形形态不断变化的情况下精确估计生理参数。我们提出了增强型弹簧动态时间规整(Boosted-SpringDTW),这是一个概率框架,它利用动态时间规整(DTW)和最少的特定领域启发式方法来同时分割生理信号并识别代表心脏事件的基准点。一个自动动态模板可适应不断变化的波形形态。我们使用一个基准PPG数据集验证了增强型弹簧动态时间规整(Boosted-SpringDTW)的性能,该数据集的形态包括个体差异和呼吸引起的变化。增强型弹簧动态时间规整(Boosted-SpringDTW)在识别基准点时的精确率、召回率和F1分数超过0.96,在估计心动间期(IBI)时平均绝对误差值小于11.41毫秒。与两种基线特征提取算法相比,增强型弹簧动态时间规整(Boosted-SpringDTW)在基准点识别方面的F1分数平均提高了35%,在心动间期(IBI)估计方面的平均百分比差异降低了16%。使用可穿戴设备进行精确的血流动力学参数估计能够在患者日常生活中实现连续的健康监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c45/9299207/dbfe6ec9099c/marti1-3174806.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验