Suppr超能文献

意图性深度过拟合学习(IDOL):一种用于自适应放射治疗的新型深度学习策略。

Intentional deep overfit learning (IDOL): A novel deep learning strategy for adaptive radiation therapy.

机构信息

Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.

Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

出版信息

Med Phys. 2022 Jan;49(1):488-496. doi: 10.1002/mp.15352. Epub 2021 Nov 30.

Abstract

PURPOSE

Applications of deep learning (DL) are essential to realizing an effective adaptive radiotherapy (ART) workflow. Despite the promise demonstrated by DL approaches in several critical ART tasks, there remain unsolved challenges to achieve satisfactory generalizability of a trained model in a clinical setting. Foremost among these is the difficulty of collecting a task-specific training dataset with high-quality, consistent annotations for supervised learning applications. In this study, we propose a tailored DL framework for patient-specific performance that leverages the behavior of a model intentionally overfitted to a patient-specific training dataset augmented from the prior information available in an ART workflow-an approach we term Intentional Deep Overfit Learning (IDOL).

METHODS

Implementing the IDOL framework in any task in radiotherapy consists of two training stages: (1) training a generalized model with a diverse training dataset of patients, just as in the conventional DL approach, and (2) intentionally overfitting this general model to a small training dataset-specific the patient of interest ( ) generated through perturbations and augmentations of the available task- and patient-specific prior information to establish a personalized IDOL model. The IDOL framework itself is task-agnostic and is, thus, widely applicable to many components of the ART workflow, three of which we use as a proof of concept here: the autocontouring task on replanning CTs for traditional ART, the MRI super-resolution (SR) task for MRI-guided ART, and the synthetic CT (sCT) reconstruction task for MRI-only ART.

RESULTS

In the replanning CT autocontouring task, the accuracy measured by the Dice similarity coefficient improves from 0.847 with the general model to 0.935 by adopting the IDOL model. In the case of MRI SR, the mean absolute error (MAE) is improved by 40% using the IDOL framework over the conventional model. Finally, in the sCT reconstruction task, the MAE is reduced from 68 to 22 HU by utilizing the IDOL framework.

CONCLUSIONS

In this study, we propose a novel IDOL framework for ART and demonstrate its feasibility using three ART tasks. We expect the IDOL framework to be especially useful in creating personally tailored models in situations with limited availability of training data but existing prior information, which is usually true in the medical setting in general and is especially true in ART.

摘要

目的

深度学习(DL)的应用对于实现有效的自适应放疗(ART)工作流程至关重要。尽管 DL 方法在几个关键的 ART 任务中表现出了很大的潜力,但要实现训练模型在临床环境中的令人满意的通用性,仍然存在未解决的挑战。其中最重要的是,在监督学习应用中,很难收集具有高质量、一致标注的特定于任务的训练数据集。在这项研究中,我们提出了一种针对患者特异性表现的定制 DL 框架,该框架利用了模型的行为,该模型被有意地过度拟合到从 ART 工作流程中可用的先验信息中增强的特定于患者的训练数据集-我们称之为有意深度过拟合学习(IDOL)。

方法

在放疗中的任何任务中实施 IDOL 框架包括两个训练阶段:(1)使用包含患者的多样化训练数据集对通用模型进行训练,就像在传统的 DL 方法中一样,(2)通过对可用任务和患者特定的先验信息进行扰动和增强,将该通用模型有意地过度拟合到特定于感兴趣患者的小训练数据集上,从而建立个性化的 IDOL 模型。IDOL 框架本身是任务不可知的,因此可以广泛应用于 ART 工作流程的许多组件,我们在这里使用其中三个作为概念验证:传统 ART 中用于重新计划 CT 的自动勾画任务、用于 MRI 引导 ART 的 MRI 超分辨率(SR)任务以及用于 MRI 仅 ART 的合成 CT(sCT)重建任务。

结果

在重新计划 CT 自动勾画任务中,采用 IDOL 模型后,通过 Dice 相似系数测量的准确性从 0.847 提高到 0.935。在 MRI SR 的情况下,与传统模型相比,IDOL 框架将平均绝对误差(MAE)提高了 40%。最后,在 sCT 重建任务中,通过利用 IDOL 框架,MAE 从 68 减少到 22 HU。

结论

在这项研究中,我们提出了一种新的 IDOL 框架用于 ART,并使用三个 ART 任务证明了其可行性。我们预计,在训练数据有限但存在先验信息的情况下,IDOL 框架特别有用,这种情况通常在医疗环境中是真实的,在 ART 中更是如此。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验