Suppr超能文献

犬类脑电图对人类有帮助:通过多空间对齐进行跨物种和跨模态癫痫发作检测。

Canine EEG helps human: cross-species and cross-modality epileptic seizure detection via multi-space alignment.

作者信息

Wang Ziwei, Li Siyang, Wu Dongrui

机构信息

Ministry of Education Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China.

Hubei Key Laboratory of Brain-inspired Intelligent Systems, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Natl Sci Rev. 2025 Mar 4;12(6):nwaf086. doi: 10.1093/nsr/nwaf086. eCollection 2025 Jun.

Abstract

Epilepsy significantly impacts global health, affecting about 65 million people worldwide, along with various animal species. The diagnostic processes of epilepsy are often hindered by the transient and unpredictable nature of seizures. Here we propose a multi-space alignment approach based on cross-species and cross-modality electroencephalogram (EEG) data to enhance the detection capabilities and understanding of epileptic seizures. By employing deep learning techniques, including domain adaptation and knowledge distillation, our framework aligns cross-species and cross-modality EEG signals to enhance the detection capability beyond traditional within-species and within-modality models. Experiments on multiple surfaces and intracranial EEG datasets of humans and canines demonstrated substantial improvements in detection accuracy, achieving over 90% AUC scores for cross-species and cross-modality seizure detection with extremely limited labeled data from the target species/modality. To our knowledge, this is the first study that demonstrates the effectiveness of integrating heterogeneous data from different species and modalities to improve EEG-based seizure detection performance. This is a pilot study that provides insights into the challenges and potential of multi-species and multi-modality data integration, offering an effective solution for future work to collect huge EEG data to train large brain models.

摘要

癫痫对全球健康有着重大影响,全球约有6500万人以及各种动物物种受其影响。癫痫的诊断过程常常受到癫痫发作短暂性和不可预测性的阻碍。在此,我们提出一种基于跨物种和跨模态脑电图(EEG)数据的多空间对齐方法,以提高对癫痫发作的检测能力和理解。通过采用深度学习技术,包括域适应和知识蒸馏,我们的框架对齐跨物种和跨模态的EEG信号,以增强检测能力,超越传统的物种内和模态内模型。在人类和犬类的多个体表和颅内EEG数据集上进行的实验表明,检测准确率有显著提高,在来自目标物种/模态的标记数据极其有限的情况下,跨物种和跨模态癫痫发作检测的AUC分数超过90%。据我们所知,这是第一项证明整合来自不同物种和模态的异构数据以提高基于EEG的癫痫发作检测性能有效性的研究。这是一项试点研究,为多物种和多模态数据集成的挑战和潜力提供了见解,为未来收集大量EEG数据以训练大型脑模型的工作提供了有效的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d59f/12051906/dd889ffc0b26/nwaf086fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验