Suppr超能文献

探讨预处理 18F-FDG PET/CT 纹理分析在预测非小细胞肺癌患者表皮生长因子受体和间变性淋巴瘤激酶突变中的作用。

IMPORTANCE of PRETREATMENT 18F-FDG PET/CT TEXTURE ANALYSIS in PREDICTING EGFR and ALK MUTATION in PATIENTS with NON-SMALL CELL LUNG CANCER.

机构信息

Bahçeşehir Çam ve Sakura Hastanesi, İstanbul, Turkey.

出版信息

Nuklearmedizin. 2022 Dec;61(6):433-439. doi: 10.1055/a-1868-4918. Epub 2022 Aug 17.

Abstract

OBJECTIVE

Identification of anaplastic lymphoma kinase (ALK) and epidermal growth factor receptor (EGFR) mutation types is of great importance before treatment with tyrosine kinase inhibitors (TKIs). Radiomics is a new strategy for noninvasively predicting the genetic status of cancer. We aimed to evaluate the predictive power of 18F-FDG PET/CT-based radiomic features for mutational status before treatment in non-small cell lung cancer (NSCLC) and to develop a predictive model based on radiomic features.

METHODS

Images of patients who underwent 18F-FDG PET/CT for initial staging with the diagnosis of NSCLC between January 2015 and July 2020 were evaluated using LIFEx software. The region of interest (ROI) of the primary tumor was established and volumetric and textural features were obtained. Clinical data and radiomic data were evaluated with machine learning (ML) algorithms to create a model.

RESULTS

For EGFR mutation prediction, the most successful machine learning algorithm obtained with GLZLM_GLNU and clinical data was Naive Bayes (AUC: 0.751, MCC: 0.347, acc: 71.4%). For ALK rearrangement prediction, the most successful machine learning algorithm obtained with GLCM_correlation, GLZLM_LZHGE and clinical data was evaluated as Naive Bayes (AUC: 0.682, MCC: 0.221, acc: 77.4%).

CONCLUSIONS

In our study, we created prediction models based on radiomic analysis of 18F-FDG PET/CT images. Tissue analysis with ML algorithms are non-invasive methods for predicting ALK rearrangement and EGFR mutation status in NSCLC, which may be useful for targeted therapy selection in a clinical setting.

摘要

目的

在使用酪氨酸激酶抑制剂(TKI)治疗之前,鉴定间变性淋巴瘤激酶(ALK)和表皮生长因子受体(EGFR)突变类型非常重要。放射组学是一种新的策略,可用于无创预测癌症的遗传状态。我们旨在评估 18F-FDG PET/CT 基于放射组学特征在非小细胞肺癌(NSCLC)治疗前对突变状态的预测能力,并基于放射组学特征建立预测模型。

方法

对 2015 年 1 月至 2020 年 7 月期间因 NSCLC 初诊而接受 18F-FDG PET/CT 初始分期的患者的图像使用 LIFEx 软件进行评估。建立原发肿瘤的感兴趣区域(ROI)并获取容积和纹理特征。使用机器学习(ML)算法评估临床数据和放射组学数据,以创建模型。

结果

对于 EGFR 突变预测,使用 GLZLM_GLNU 和临床数据获得的最成功的机器学习算法是朴素贝叶斯(AUC:0.751,MCC:0.347,准确度:71.4%)。对于 ALK 重排预测,使用 GLCM_correlation、GLZLM_LZHGE 和临床数据获得的最成功的机器学习算法被评估为朴素贝叶斯(AUC:0.682,MCC:0.221,准确度:77.4%)。

结论

在我们的研究中,我们创建了基于 18F-FDG PET/CT 图像放射组学分析的预测模型。使用 ML 算法对组织进行分析是非侵入性方法,可用于预测 NSCLC 中的 ALK 重排和 EGFR 突变状态,这可能有助于临床环境中的靶向治疗选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验