Suppr超能文献

与间变性淋巴瘤激酶重排肺腺癌相关的影像组学特征和肿瘤免疫微环境及其预后价值。

Radiomic features and tumor immune microenvironment associated with anaplastic lymphoma kinase-rearranged lung adenocarcinoma and their prognostic value.

作者信息

Han Ying, Feng Wenya, Li Huaxin, Wang Hua, Ye Zhaoxiang

机构信息

Departments of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.

Departments of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.

出版信息

Front Genet. 2025 May 1;16:1581937. doi: 10.3389/fgene.2025.1581937. eCollection 2025.

Abstract

PURPOSE

To identify radiomic features from preoperative computed tomography (CT) images and characteristics of the tumor immune microenvironment (TIME) associated with anaplastic lymphoma kinase () rearrangement in patients with lung adenocarcinomas and their prognostic value in predicting recurrence or metastases after surgery.

MATERIALS AND METHODS

This retrospective study included 66 -positive and 66 -negative patients who underwent surgical resected lung adenocarcinoma. The number of CD8 T cells and Human leukocyte antigen class I (HLA-I)/programmed death ligand 1 (PD-L1) expression were determined using immunohistochemistry. Radiomic features were extracted from the preoperative CT images. Combined radiomic, clinicopathological, and clinicopathological-radiomic models were built to predict rearrangements. The models' prediction performance was analyzed using receiver operating characteristic (ROC) curves with five-fold cross-validation. Prediction models for determining disease-free survival (DFS) of -rearranged patients were developed, and the C-index after internal cross-validation was calculated to evaluate the performance of the models.

RESULTS

HLA-I and PD-L1 expression were negatively associated with rearrangement (both P < 0.001). The ROC curve indicated areas under the curve of 0.763, 0.817, and 0.878 for the radiomics, clinicopathology, and combined models in predicting rearrangement, respectively. The combined model showed significant improvement compared to the clinicopathological (P = 0.02) and radiomics (P < 0.001) models alone. The validation C-indices were 0.752, 0.712, and 0.808 for the radiomic, clinicopathological, and combined models in predicting the DFS of -rearranged patients, respectively. The combined model showed a significant improvement (P < 0.001) compared to the clinicopathological model alone.

CONCLUSION

This study demonstrated the potential role of radiomics and TIME characteristics in identifying rearrangements in lung adenocarcinomas and the prognostic value of radiomics in predicting DFS in patients with rearrangements.

摘要

目的

从术前计算机断层扫描(CT)图像中识别影像组学特征,以及与肺腺癌患者间变性淋巴瘤激酶(ALK)重排相关的肿瘤免疫微环境(TIME)特征,并评估其对术后复发或转移的预测预后价值。

材料与方法

这项回顾性研究纳入了66例ALK阳性和66例ALK阴性的接受手术切除的肺腺癌患者。采用免疫组织化学法测定CD8 T细胞数量以及人类白细胞抗原I类(HLA-I)/程序性死亡配体1(PD-L1)表达情况。从术前CT图像中提取影像组学特征。构建联合影像组学、临床病理及临床病理-影像组学模型以预测ALK重排。使用接受者操作特征(ROC)曲线及五折交叉验证分析模型的预测性能。建立用于确定ALK重排患者无病生存期(DFS)的预测模型,并计算内部交叉验证后的C指数以评估模型性能。

结果

HLA-I和PD-L1表达与ALK重排呈负相关(均P < 0.001)。ROC曲线显示,影像组学、临床病理及联合模型预测ALK重排的曲线下面积分别为0.763、0.817和0.878。与单独的临床病理模型(P = 0.02)和影像组学模型(P < 0.001)相比,联合模型有显著改善。影像组学、临床病理及联合模型预测ALK重排患者DFS的验证C指数分别为0.752、0.712和0.808。与单独的临床病理模型相比,联合模型有显著改善(P < 0.001)。

结论

本研究证明了影像组学和TIME特征在识别肺腺癌ALK重排中的潜在作用,以及影像组学在预测ALK重排患者DFS方面的预后价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a78f/12078255/150cbf05092e/fgene-16-1581937-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验