Campos Eduardo Lima, Cysne Rubens Penha, Madureira Alexandre L, Mendes Gélcio L Q
EPGE Brazilian School of Economics and Finance (FGV EPGE), Rio de Janeiro, RJ, Brazil.
ENCE - Escola Nacional de Ciências Estatísticas (ENCE/IBGE), Rio de Janeiro, RJ, Brazil.
Infect Dis Model. 2021;6:751-765. doi: 10.1016/j.idm.2021.05.003. Epub 2021 Jun 10.
We use an age-dependent SIR system of equations to model the evolution of the COVID-19. Parameters that measure the amount of interaction in different locations (home, work, school, other) are approximated from in-sample data using a random optimization scheme, and indicate changes in social distancing along the course of the pandemic. That allows the estimation of the time evolution of classical and age-dependent reproduction numbers. With those parameters we predict the disease dynamics, and compare our results with out-of-sample data from the City of Rio de Janeiro. Finally, we provide a numerical investigation regarding age-based vaccination policies, shedding some light on whether is preferable to vaccinate those at most risk (the elderly) or those who spread the disease the most (the youngest). There is no clear upshot, as the results depend on the age of those immunized, contagious parameters, vaccination schedules and efficiency.
我们使用一个与年龄相关的SIR方程组来模拟新冠疫情的演变。通过随机优化方案从样本数据中近似得出衡量不同场所(家庭、工作场所、学校、其他场所)互动量的参数,这些参数表明了疫情期间社交距离的变化。这使得我们能够估计经典繁殖数和与年龄相关的繁殖数随时间的演变。利用这些参数,我们预测疾病动态,并将结果与里约热内卢市的样本外数据进行比较。最后,我们对基于年龄的疫苗接种政策进行了数值研究,以探讨优先为风险最高人群(老年人)还是传播疾病最多人群(最年轻者)接种疫苗是否更可取。结果并不明确,因为结果取决于接种疫苗者的年龄、传染参数、疫苗接种计划和效率。