School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
Center for molecular design and biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States.
ACS Nano. 2022 Sep 27;16(9):14086-14096. doi: 10.1021/acsnano.2c04013. Epub 2022 Aug 18.
We present here the combination of experimental and computational modeling tools for the design and characterization of protein-DNA hybrid nanostructures. Our work incorporates several features in the design of these nanostructures: (1) modeling of the protein-DNA linker identity and length; (2) optimizing the design of protein-DNA cages to account for mechanical stresses; (3) probing the incorporation efficiency of protein-DNA conjugates into DNA nanostructures. The modeling tools were experimentally validated using structural characterization methods like cryo-TEM and AFM. Our method can be used for fitting low-resolution electron density maps when structural insights cannot be deciphered from experiments, as well as enable validation of nanostructured systems before their experimental realization. These tools will facilitate the design of complex hybrid protein-DNA nanostructures that seamlessly integrate the two different biomolecules.
我们在这里展示了用于设计和表征蛋白-DNA 杂化纳米结构的实验和计算建模工具的结合。我们的工作在这些纳米结构的设计中包含了几个特点:(1)模拟蛋白-DNA 连接体的身份和长度;(2)优化蛋白-DNA 笼的设计以考虑机械应力;(3)探测蛋白-DNA 缀合物掺入 DNA 纳米结构的效率。该建模工具通过 cryo-TEM 和 AFM 等结构特征化方法进行了实验验证。当无法从实验中推断出结构见解时,我们的方法可用于拟合低分辨率电子密度图,并且在其实验实现之前能够验证纳米结构系统。这些工具将有助于设计复杂的杂化蛋白-DNA 纳米结构,这些纳米结构可以无缝整合这两种不同的生物分子。