Suppr超能文献

长链非编码 RNA NEAT1 和 TUG1 在评估 COVID-19 感染中细胞因子风暴发病机制中的相互作用。

Interplay of LncRNAs NEAT1 and TUG1 in Incidence of Cytokine Storm in Appraisal of COVID-19 Infection.

机构信息

Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University 32511, Shebin El-Kom, Egypt.

Medical Biochemistry Unit, College of Medicine, Al Baha University, Al Baha 65779, Saudi Arabia.

出版信息

Int J Biol Sci. 2022 Jul 18;18(13):4901-4913. doi: 10.7150/ijbs.72318. eCollection 2022.

Abstract

: In 2019, the coronavirus pandemic emerged, resulting in the highest mortality and morbidity rate globally. It has a prevailing transmission rate and continues to be a global burden. There is a paucity of data regarding the role of long non-coding RNAs (lncRNAs) in COVID-19. Therefore, the current study aimed to investigate lncRNAs, particularly NEAT1 and TUG1, and their association with IL-6, CCL2, and TNF-α in COVID-19 patients with moderate and severe disease. : The study was conducted on 80 COVID-19 patients (35 with severe and 45 with moderate infection) and 40 control subjects. Complete blood count (CBC), D-dimer assay, serum ferritin, and CRP were assayed. qRT-PCR was used to measure RNAs and lncRNAs. : NEAT1 and TUG1 expression levels were higher in COVID-19 patients compared with controls (P<0.001). Furthermore, CCL2, IL-6, and TNF-α expressions were higher in COVID-19 patients compared to controls (P<0.001). CCL2 and IL-6 expression levels were significantly higher in patients with severe compared to those with moderate COVID-19 infection (P<0.001). IL-6 had the highest accuracy in distinguishing COVID-19 patients (AUC=1, P<0.001 at a cutoff of 0.359), followed by TUG1 (AUC=0.999, P<0.001 at a cutoff of 2.28). NEAT1 and TUG1 had significant correlations with the measured cytokines, and based on the multivariate regression analysis, NEAT1 is the independent predictor for survival in COVID-19 patients (P=0.02). : In COVID-19 patients, significant overexpression of NEAT1 and TUG1 was observed, consistent with cytokine storm. TUG1 could be an efficient diagnostic biomarker, whereas NEAT1 was an independent predictor for overall survival.

摘要

2019 年,冠状病毒大流行爆发,导致了全球最高的死亡率和发病率。它具有普遍的传播率,并且仍然是全球的负担。关于长非编码 RNA(lncRNA)在 COVID-19 中的作用的数据很少。因此,本研究旨在研究 lncRNA,特别是 NEAT1 和 TUG1,以及它们与 COVID-19 中中度和重度疾病患者的 IL-6、CCL2 和 TNF-α的关系。

该研究共纳入 80 名 COVID-19 患者(35 名重症患者和 45 名中度感染患者)和 40 名对照。检测全血细胞计数(CBC)、D-二聚体测定、血清铁蛋白和 CRP。使用 qRT-PCR 测量 RNA 和 lncRNA。

与对照组相比,COVID-19 患者的 NEAT1 和 TUG1 表达水平更高(P<0.001)。此外,与对照组相比,COVID-19 患者的 CCL2、IL-6 和 TNF-α表达水平更高(P<0.001)。与中度 COVID-19 感染相比,严重 COVID-19 感染患者的 CCL2 和 IL-6 表达水平显著更高(P<0.001)。IL-6 在区分 COVID-19 患者方面具有最高的准确性(AUC=1,截断值为 0.359 时 P<0.001),其次是 TUG1(AUC=0.999,截断值为 2.28 时 P<0.001)。NEAT1 和 TUG1 与所测量的细胞因子有显著相关性,基于多元回归分析,NEAT1 是 COVID-19 患者生存的独立预测因子(P=0.02)。

在 COVID-19 患者中,观察到 NEAT1 和 TUG1 的显著过表达,与细胞因子风暴一致。TUG1 可能是一种有效的诊断生物标志物,而 NEAT1 是总体生存的独立预测因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e58/9379411/346aaa2e3291/ijbsv18p4901g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验