Suppr超能文献

基于多层面特征的带域注意力的 RNN 在 Twitter 上检测个人用药情况

Detecting Personal Medication Intake in Twitter via Domain Attention-Based RNN with Multi-Level Features.

机构信息

Henan Agricultural University, Zhengzhou 450002, China.

School of Computing and Mathematics, Keele University, Keele ST55AA, UK.

出版信息

Comput Intell Neurosci. 2022 Aug 9;2022:5467262. doi: 10.1155/2022/5467262. eCollection 2022.

Abstract

Personal medication intake detection aims to automatically detect tweets that show clear evidence of personal medication consumption. It is a research topic that has attracted considerable attention to drug safety surveillance. This task is inevitably dependent on medical domain information, and the current main model for this task does not explicitly consider domain information. To tackle this problem, we propose a domain attention mechanism for recurrent neural networks, LSTMs, with a multi-level feature representation of Twitter data. Specifically, we utilize character-level CNN to capture morphological features at the word level. Subsequently, we feed them with word embeddings into a BiLSTM to get the hidden representation of a tweet. An attention mechanism is introduced over the hidden state of the BiLSTM to attend to special medical information. Finally, a classification is performed on the weighted hidden representation of tweets. Experiments over a publicly available benchmark dataset show that our model can exploit a domain attention mechanism to consider medical information to improve performance. For example, our approach achieves a precision score of 0.708, a recall score of 0.694, and a 1 score of 0.697, which is significantly outperforming multiple strong and relevant baselines.

摘要

个人用药摄入检测旨在自动检测明确显示个人用药消费的推文。这是一个引起药物安全监测关注的研究课题。这项任务不可避免地依赖于医学领域的信息,而当前该任务的主要模型并没有明确考虑领域信息。为了解决这个问题,我们提出了一种基于循环神经网络(LSTM)的域注意力机制,对 Twitter 数据进行多层次的特征表示。具体来说,我们利用字符级 CNN 来捕获单词级别的形态特征。然后,我们将它们与单词嵌入一起输入到 BiLSTM 中,以获取推文的隐藏表示。在 BiLSTM 的隐藏状态上引入注意力机制,以关注特殊的医学信息。最后,对推文的加权隐藏表示进行分类。在一个公开的基准数据集上的实验表明,我们的模型可以利用域注意力机制来考虑医学信息,从而提高性能。例如,我们的方法在精度得分上达到 0.708,召回得分上达到 0.694,F1 得分上达到 0.697,显著优于多个强大而相关的基线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ec0/9381240/71dd9824d9d1/CIN2022-5467262.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验