Suppr超能文献

基于深度学习的尼泊尔新冠相关推文情感分析方法。

Deep Learning-Based Methods for Sentiment Analysis on Nepali COVID-19-Related Tweets.

机构信息

Department of Electrical and Computer Systems Engineering, Monash University, VIC, Clayton, 3800, Australia.

Central Department of Computer Science and Information Technology, Tribhuvan University, Kathmandu 44600, Nepal.

出版信息

Comput Intell Neurosci. 2021 Nov 1;2021:2158184. doi: 10.1155/2021/2158184. eCollection 2021.

Abstract

COVID-19 has claimed several human lives to this date. People are dying not only because of physical infection of the virus but also because of mental illness, which is linked to people's sentiments and psychologies. People's written texts/posts scattered on the web could help understand their psychology and the state they are in during this pandemic. In this paper, we analyze people's sentiment based on the classification of tweets collected from the social media platform, Twitter, in Nepal. For this, we, first, propose to use three different feature extraction methods-fastText-based (ft), domain-specific (ds), and domain-agnostic (da)-for the representation of tweets. Among these three methods, two methods ("ds" and "da") are the novel methods used in this study. Second, we propose three different convolution neural networks (CNNs) to implement the proposed features. Last, we ensemble such three CNNs models using ensemble CNN, which works in an end-to-end manner, to achieve the end results. For the evaluation of the proposed feature extraction methods and CNN models, we prepare a Nepali Twitter sentiment dataset, called NepCOV19Tweets, with 3 classes (positive, neutral, and negative). The experimental results on such dataset show that our proposed feature extraction methods possess the discriminating characteristics for the sentiment classification. Moreover, the proposed CNN models impart robust and stable performance on the proposed features. Also, our dataset can be used as a benchmark to study the COVID-19-related sentiment analysis in the Nepali language.

摘要

截至目前,COVID-19 已夺走了许多人的生命。人们不仅因病毒的身体感染而死亡,还因与人们的情绪和心理有关的精神疾病而死亡。人们在网络上散布的书面文字/帖子可以帮助了解他们在大流行期间的心理和状态。在本文中,我们根据从尼泊尔社交媒体平台 Twitter 上收集的推文分类来分析人们的情绪。为此,我们首先提出了使用三种不同的特征提取方法(基于 fastText 的方法 ft、特定领域的方法 ds 和与领域无关的方法 da)来表示推文。在这三种方法中,前两种方法("ds"和"da")是本研究中使用的新方法。其次,我们提出了三种不同的卷积神经网络(CNN)来实现所提出的特征。最后,我们使用端到端工作的集成 CNN 来集成这三个 CNN 模型,以获得最终结果。为了评估所提出的特征提取方法和 CNN 模型,我们准备了一个尼泊尔语 Twitter 情感数据集,称为 NepCOV19Tweets,分为 3 类(正面、中性和负面)。在该数据集上的实验结果表明,我们提出的特征提取方法具有用于情感分类的判别特征。此外,所提出的 CNN 模型在提出的特征上具有强大而稳定的性能。此外,我们的数据集可作为研究尼泊尔语中 COVID-19 相关情感分析的基准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c77a/8561567/c863dff88fc6/CIN2021-2158184.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验