Suppr超能文献

分级多孔支架的熔融电纺丝以模拟人眼小梁网的基质结构。

Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork.

机构信息

INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.

Chemistry Department, Saarland University, 66123 Saarbrücken, Germany.

出版信息

ACS Biomater Sci Eng. 2022 Sep 12;8(9):3899-3911. doi: 10.1021/acsbiomaterials.2c00623. Epub 2022 Aug 19.

Abstract

The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glaucoma. Engineered HTMs could help to understand the structure-function relation in natural tissues and lead to new regenerative solutions. Here, melt electrowriting (MEW) is explored as a biofabrication technique to produce fibrillar, porous scaffolds that mimic the multilayer, gradient structure of native HTM. Poly(caprolactone) constructs with a height of 125-500 μm and fiber diameters of 10-12 μm are printed. Scaffolds with a tensile modulus between 5.6 and 13 MPa and a static compression modulus in the range of 6-360 kPa are obtained by varying the scaffold design, that is, the density and orientation of the fibers and number of stacked layers. Primary HTM cells attach to the scaffolds, proliferate, and form a confluent layer within 8-14 days, depending on the scaffold design. High cell viability and cell morphology close to that in the native tissue are observed. The present work demonstrates the utility of MEW for reconstructing complex morphological features of natural tissues.

摘要

人眼小梁网(HTM)的渗透性通过其厚度上的孔隙率梯度来调节,该梯度由基质原纤维和细胞的堆叠层调制。HTM 孔隙率的变化与眼内压的升高和青光眼等疾病的进展有关。工程化的 HTM 有助于理解天然组织的结构-功能关系,并为新的再生解决方案提供思路。本文探索了熔融电纺(MEW)作为一种生物制造技术,用于生产纤维状、多孔的支架,模拟天然 HTM 的多层、梯度结构。打印出高度为 125-500μm、纤维直径为 10-12μm 的聚己内酯(PCL)构建体。通过改变支架设计,即纤维的密度和取向以及堆叠层数,获得了拉伸模量在 5.6-13MPa 之间且静态压缩模量在 6-360kPa 范围内的支架。原代 HTM 细胞在支架上附着、增殖,并在 8-14 天内形成融合层,具体取决于支架设计。观察到高细胞活力和接近天然组织的细胞形态。本工作证明了 MEW 用于重建天然组织复杂形态特征的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750c/9472227/fdeb66b3ab08/ab2c00623_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验