Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia30322, United States.
J Chem Theory Comput. 2023 Feb 14;19(3):822-836. doi: 10.1021/acs.jctc.2c01016. Epub 2023 Jan 19.
Efficient quantum circuits are necessary for realizing quantum algorithms on noisy intermediate-scale quantum devices. Fermionic excitations entering unitary coupled-cluster (UCC) ansätze give rise to quantum circuits containing CNOT "staircases" whose number scales exponentially with the excitation rank. Recently, Yordanov et al. [, 062612 (2020); , 228 (2021)] constructed CNOT-efficient quantum circuits for both Fermionic- (FEB) and qubit-excitation-based (QEB) singles and doubles and illustrated their usefulness in adaptive derivative-assembled pseudo-Trotterized variational quantum eigensolver (ADAPT-VQE) simulations. In this work, we extend these CNOT-efficient quantum circuits to arbitrary excitation ranks. To illustrate the benefits of these compact FEB and QEB quantum circuits, we perform numerical simulations using the recently developed selected projective quantum eigensolver (SPQE) approach, which relies on an adaptive UCC ansatz built from arbitrary-order particle-hole excitation operators. We show that both FEB- and QEB-SPQE decrease the number of CNOT gates compared to traditional SPQE by factors as large as 15. At the same time, QEB-SPQE requires, in general, more ansatz parameters than FEB-SPQE, in particular those corresponding to higher-than-double excitations, resulting in quantum circuits with larger CNOT counts. Although ADAPT-VQE generates quantum circuits with fewer CNOTs than SPQE, SPQE requires orders of magnitude less residual element evaluations than gradient element evaluations in ADAPT-VQE.
高效的量子电路对于在噪声中等规模量子设备上实现量子算法是必要的。进入幺正耦合簇(UCC)ansatz 的费米子激发导致包含 CNOT“阶梯”的量子电路,其数量随激发阶数呈指数增长。最近,Yordanov 等人[,062612(2020);,228(2021)]构建了基于费米子(FEB)和基于量子比特激发的(QEB)单激发和双激发的 CNOT 高效量子电路,并展示了它们在自适应导数组装的伪 Trotter 变分量子本征求解器(ADAPT-VQE)模拟中的有用性。在这项工作中,我们将这些 CNOT 高效量子电路扩展到任意激发阶。为了说明这些紧凑的 FEB 和 QEB 量子电路的优势,我们使用最近开发的选择投影量子本征求解器(SPQE)方法进行数值模拟,该方法依赖于从任意阶粒子-空穴激发算符构建的自适应 UCC ansatz。我们表明,与传统的 SPQE 相比,FEB 和 QEB-SPQE 都将 CNOT 门的数量减少了多达 15 倍。同时,QEB-SPQE 通常比 FEB-SPQE 需要更多的 ansatz 参数,特别是对于高于双激发的参数,导致 CNOT 计数更大的量子电路。尽管 ADAPT-VQE 生成的量子电路中的 CNOT 比 SPQE 少,但 SPQE 在 ADAPT-VQE 中所需的剩余元素评估数量比梯度元素评估数量少几个数量级。