Suppr超能文献

最可能曲线法——一种从低平板计数数据中估计动力学模型的稳健方法,可降低不确定性。

The Most Probable Curve method - A robust approach to estimate kinetic models from low plate count data resulting in reduced uncertainty.

机构信息

Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.

Food Quality & Design, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.

出版信息

Int J Food Microbiol. 2022 Nov 2;380:109871. doi: 10.1016/j.ijfoodmicro.2022.109871. Epub 2022 Aug 12.

Abstract

A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model that makes a separation between the "true" microbial concentration according to the model, the "actual" concentration in the media considering chance, and the actual counts on the plate. It is based on the assumptions that stress resistance is homogeneous within a microbial population, and that there is no aggregation of microbial cells. Under these assumptions, the number of colonies in/on a plate follows a Poisson distribution with expected value depending on the proposed kinetic model, the number of dilutions and the plated volume. The novel method is compared against (non)linear regression based on a normal likelihood distribution (traditional method), Poisson regression and gamma-Poisson regression using data on the inactivation of Listeria monocytogenes. The conclusion is that the traditional method has limitations when the data includes plates with low (or zero) cell counts, which can be mitigated using more complex (discrete) likelihoods. However, Poisson regression uses an unrealistic likelihood function, making it unsuitable for survivor curves with several log-reductions. Gamma-Poisson regression uses a more realistic likelihood function, even though it is based mostly on empirical hypotheses. We conclude that the MPC method can be used reliably, especially when the data includes plates with low or zero counts. Furthermore, it generates a more realistic description of uncertainty, integrating the contribution of the plating error and reducing the uncertainty of the primary model parameters. Consequently, although it increases modelling complexity, the MPC method can be of great interest in predictive microbiology, especially in studies focused on variability analysis.

摘要

提出了一种用于拟合液体培养基中微生物失活动力学模型数据的新方法

最可能曲线(MPC)方法。它是一种多层次模型,将根据模型的“真实”微生物浓度、考虑到机会的培养基中的“实际”浓度以及平板上的实际计数进行分离。它基于以下假设:应激抗性在微生物群体内是均匀的,并且微生物细胞没有聚集。在这些假设下,平板上的菌落数量遵循泊松分布,其期望值取决于所提出的动力学模型、稀释倍数和接种量。使用李斯特菌失活动力学的数据,将新方法与基于正态似然分布的非线性回归(传统方法)、泊松回归和伽马泊松回归进行了比较。结论是,当数据包括平板上细胞计数较低(或为零)的平板时,传统方法存在局限性,可通过使用更复杂(离散)的似然来缓解。然而,泊松回归使用不切实际的似然函数,使其不适合具有多个对数减少的存活曲线。伽马泊松回归使用更现实的似然函数,即使它主要基于经验假设。我们得出的结论是,MPC 方法可以可靠地使用,尤其是当数据包括平板上细胞计数较低或为零时。此外,它生成了对不确定性的更现实描述,整合了接种错误的贡献并降低了主要模型参数的不确定性。因此,尽管它增加了建模复杂性,但 MPC 方法在预测微生物学中特别在关注变异性分析的研究中具有很大的兴趣。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验