Suppr超能文献

基于多源数据的深度网络用于行为变异额颞叶痴呆识别。

Deep networks for behavioral variant frontotemporal dementia identification from multiple acquisition sources.

机构信息

Institute of Information Science and Technologies "Alessandro Faedo" (ISTI), National Research Council (CNR), Pisa (PI), Italy.

Institute of Information Science and Technologies "Alessandro Faedo" (ISTI), National Research Council (CNR), Pisa (PI), Italy.

出版信息

Comput Biol Med. 2022 Sep;148:105937. doi: 10.1016/j.compbiomed.2022.105937. Epub 2022 Aug 8.

Abstract

Behavioral variant frontotemporal dementia (bvFTD) is a neurodegenerative syndrome whose clinical diagnosis remains a challenging task especially in the early stage of the disease. Currently, the presence of frontal and anterior temporal lobe atrophies on magnetic resonance imaging (MRI) is part of the diagnostic criteria for bvFTD. However, MRI data processing is usually dependent on the acquisition device and mostly require human-assisted crafting of feature extraction. Following the impressive improvements of deep architectures, in this study we report on bvFTD identification using various classes of artificial neural networks, and present the results we achieved on classification accuracy and obliviousness on acquisition devices using extensive hyperparameter search. In particular, we will demonstrate the stability and generalization of different deep networks based on the attention mechanism, where data intra-mixing confers models the ability to identify the disorder even on MRI data in inter-device settings, i.e., on data produced by different acquisition devices and without model fine tuning, as shown from the very encouraging performance evaluations that dramatically reach and overcome the 90% value on the AuROC and balanced accuracy metrics.

摘要

行为变异额颞叶痴呆(bvFTD)是一种神经退行性综合征,其临床诊断仍然是一项具有挑战性的任务,特别是在疾病的早期阶段。目前,磁共振成像(MRI)上存在额颞叶前部萎缩是 bvFTD 诊断标准的一部分。然而,MRI 数据处理通常依赖于采集设备,并且大多数情况下需要人工辅助制作特征提取。在深度学习架构取得显著进展的背景下,本研究报告了使用各种类型的人工神经网络进行 bvFTD 识别的情况,并展示了我们在使用广泛的超参数搜索进行分类准确性和对采集设备不敏感方面所取得的成果。特别是,我们将展示基于注意力机制的不同深度网络的稳定性和泛化能力,其中数据内混合使模型能够识别该疾病,即使在设备间设置的 MRI 数据上也是如此,即在不同采集设备生成的数据上,且无需对模型进行微调,从非常令人鼓舞的性能评估中可以看出,在 AuROC 和平衡准确性指标上,模型的表现显著达到并超过了 90%的值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验