Ma Da, Stocks Jane, Rosen Howard, Kantarci Kejal, Lockhart Samuel N, Bateman James R, Craft Suzanne, Gurcan Metin N, Popuri Karteek, Beg Mirza Faisal, Wang Lei
Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
Department of Psychiatry and Behavioral Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
Front Neurosci. 2024 Feb 7;18:1331677. doi: 10.3389/fnins.2024.1331677. eCollection 2024.
Frontotemporal dementia (FTD) represents a collection of neurobehavioral and neurocognitive syndromes that are associated with a significant degree of clinical, pathological, and genetic heterogeneity. Such heterogeneity hinders the identification of effective biomarkers, preventing effective targeted recruitment of participants in clinical trials for developing potential interventions and treatments. In the present study, we aim to automatically differentiate patients with three clinical phenotypes of FTD, behavioral-variant FTD (bvFTD), semantic variant PPA (svPPA), and nonfluent variant PPA (nfvPPA), based on their structural MRI by training a deep neural network (DNN).
Data from 277 FTD patients (173 bvFTD, 63 nfvPPA, and 41 svPPA) recruited from two multi-site neuroimaging datasets: the Frontotemporal Lobar Degeneration Neuroimaging Initiative and the ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar Degeneration databases. Raw T1-weighted MRI data were preprocessed and parcellated into patch-based ROIs, with cortical thickness and volume features extracted and harmonized to control the confounding effects of sex, age, total intracranial volume, cohort, and scanner difference. A multi-type parallel feature embedding framework was trained to classify three FTD subtypes with a weighted cross-entropy loss function used to account for unbalanced sample sizes. Feature visualization was achieved through post-hoc analysis using an integrated gradient approach.
The proposed differential diagnosis framework achieved a mean balanced accuracy of 0.80 for bvFTD, 0.82 for nfvPPA, 0.89 for svPPA, and an overall balanced accuracy of 0.84. Feature importance maps showed more localized differential patterns among different FTD subtypes compared to groupwise statistical mapping.
In this study, we demonstrated the efficiency and effectiveness of using explainable deep-learning-based parallel feature embedding and visualization framework on MRI-derived multi-type structural patterns to differentiate three clinically defined subphenotypes of FTD: bvFTD, nfvPPA, and svPPA, which could help with the identification of at-risk populations for early and precise diagnosis for intervention planning.
额颞叶痴呆(FTD)是一组神经行为和神经认知综合征,具有显著的临床、病理和基因异质性。这种异质性阻碍了有效生物标志物的识别,妨碍了在开发潜在干预措施和治疗方法的临床试验中有效、有针对性地招募参与者。在本研究中,我们旨在通过训练深度神经网络(DNN),基于结构磁共振成像(MRI)自动区分FTD的三种临床表型患者,即行为变异型FTD(bvFTD)、语义变异型原发性进行性失语(svPPA)和非流利变异型原发性进行性失语(nfvPPA)。
从两个多中心神经影像数据集招募了277例FTD患者(173例bvFTD、63例nfvPPA和41例svPPA),这两个数据集分别是额颞叶变性神经影像倡议项目和ARTFL-LEFFTDS额颞叶变性纵向数据库。对原始T1加权MRI数据进行预处理,并分割成基于补丁的感兴趣区域(ROI),提取皮质厚度和体积特征并进行标准化,以控制性别、年龄、颅内总体积、队列和扫描仪差异的混杂效应。训练了一个多类型并行特征嵌入框架,使用加权交叉熵损失函数对三种FTD亚型进行分类,以解决样本量不平衡的问题。通过使用积分梯度方法的事后分析实现特征可视化。
所提出的鉴别诊断框架对bvFTD的平均平衡准确率为0.80,对nfvPPA为0.82,对svPPA为0.89,总体平衡准确率为0.84。与分组统计映射相比,特征重要性图显示不同FTD亚型之间的差异模式更具局部性。
在本研究中,我们证明了使用基于可解释深度学习的并行特征嵌入和可视化框架处理MRI衍生的多类型结构模式,以区分FTD的三种临床定义亚表型(bvFTD、nfvPPA和svPPA)的效率和有效性,这有助于识别高危人群,以便进行早期精确诊断以制定干预计划。