Suppr超能文献

使用卷积和对比神经网络从重复的心理生理 EEG 实验中解码工作记忆相关信息。

Decoding working memory-related information from repeated psychophysiological EEG experiments using convolutional and contrastive neural networks.

机构信息

Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.

Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteura 3, 02-093 Warsaw, Poland.

出版信息

J Neural Eng. 2022 Sep 5;19(4). doi: 10.1088/1741-2552/ac8b38.

Abstract

Extracting reliable information from electroencephalogram (EEG) is difficult because the low signal-to-noise ratio and significant intersubject variability seriously hinder statistical analyses. However, recent advances in explainable machine learning open a new strategy to address this problem.The current study evaluates this approach using results from the classification and decoding of electrical brain activity associated with information retention. We designed four neural network models differing in architecture, training strategies, and input representation to classify single experimental trials of a working memory task.Our best models achieved an accuracy (ACC) of 65.29 ± 0.76 and Matthews correlation coefficient of 0.288 ± 0.018, outperforming the reference model trained on the same data. The highest correlation between classification score and behavioral performance was 0.36 (= 0.0007). Using analysis of input perturbation, we estimated the importance of EEG channels and frequency bands in the task at hand. The set of essential features identified for each network varies. We identified a subset of features common to all models that identified brain regions and frequency bands consistent with current neurophysiological knowledge of the processes critical to attention and working memory. Finally, we proposed sanity checks to examine further the robustness of each model's set of features.Our results indicate that explainable deep learning is a powerful tool for decoding information from EEG signals. It is crucial to train and analyze a range of models to identify stable and reliable features. Our results highlight the need for explainable modeling as the model with the highest ACC appeared to use residual artifactual activity.

摘要

从脑电图(EEG)中提取可靠信息很困难,因为低信噪比和显著的个体间变异性严重阻碍了统计分析。然而,可解释机器学习的最新进展为解决这个问题提供了新的策略。本研究使用与信息保留相关的脑电活动分类和解码的结果来评估这种方法。我们设计了四个神经网络模型,它们在架构、训练策略和输入表示方面有所不同,以对工作记忆任务的单个实验试验进行分类。我们最好的模型达到了 65.29±0.76 的准确率(ACC)和 0.288±0.018 的马修斯相关系数,优于在相同数据上训练的参考模型。分类得分与行为表现之间的最高相关性为 0.36(=0.0007)。使用输入扰动分析,我们估计了 EEG 通道和频带在手边任务中的重要性。为每个网络确定的基本特征集是不同的。我们确定了一个子集,这些子集对所有模型都是通用的,它们确定了与注意和工作记忆过程相关的当前神经生理学知识一致的大脑区域和频带。最后,我们提出了合理性检查,以进一步检查每个模型特征集的稳健性。我们的结果表明,可解释的深度学习是从 EEG 信号解码信息的强大工具。训练和分析一系列模型以识别稳定可靠的特征至关重要。我们的结果强调了可解释建模的必要性,因为具有最高 ACC 的模型似乎使用了残留的人为活动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验