Suppr超能文献

通过机器学习回归方法预测喷雾干燥分散体粒径。

Predicting Spray Dried Dispersion Particle Size Via Machine Learning Regression Methods.

机构信息

Computational Science, Lonza, 1201 NW Wall St, Bend, OR, 97703, USA.

Global Research and Development, Lonza, Bend, OR, USA.

出版信息

Pharm Res. 2022 Dec;39(12):3223-3239. doi: 10.1007/s11095-022-03370-3. Epub 2022 Aug 19.

Abstract

Spray dried dispersion particle size is a critical quality attribute that impacts bioavailability and manufacturability of the spray drying process and final dosage form. Substantial experimentation has been required to relate formulation and process parameters to particle size with the results limited to a single active pharmaceutical ingredient (API). This is the first study that demonstrates prediction of particle size independent of API for a wide range of formulation and process parameters at pilot and commercial scale. Additionally we developed a strategy with formulation and target particle size as inputs to define a set of "first to try" process parameters. An ensemble machine learning model was created to predict dried particle size across pilot and production scale spray dryers, with prediction errors between -7.7% and 18.6% (25th/75th percentiles) for a hold-out evaluation set. Shapley additive explanations identified how changes in formulation and process parameters drove variations in model predictions of dried particle size and were found to be consistent with mechanistic understanding of the particle formation process. Additionally, an optimization strategy used the predictive model to determine initial estimates for process parameter values that best achieve a target particle size for a provided formulation. The optimization strategy was employed to estimate process parameters in the hold-out evaluation set and to illustrate selection of process parameters during scale-up. The results of this study illustrate how trained regression models can reduce the experimental effort required to create an in-silico design space for new molecules during early-stage process development and subsequent scale-up.

摘要

喷雾干燥分散体粒径是一个关键的质量属性,它影响着喷雾干燥过程和最终剂型的生物利用度和可制造性。为了将配方和工艺参数与粒径相关联,已经进行了大量的实验,但是结果仅限于单一的活性药物成分(API)。这是第一项研究,证明了在中试和商业规模下,对于广泛的配方和工艺参数,可以独立于 API 来预测粒径。此外,我们还开发了一种策略,将配方和目标粒径作为输入,定义了一组“首先尝试”的工艺参数。创建了一个集成机器学习模型,用于预测中试和生产规模喷雾干燥器中的干燥粒径,对于验证集,预测误差在-7.7%至 18.6%(25%/75%分位数)之间。Shapley 加法解释确定了配方和工艺参数的变化如何驱动模型对干燥粒径预测的变化,并且与对颗粒形成过程的机制理解一致。此外,优化策略使用预测模型来确定初始工艺参数值,这些值可以最好地实现提供的配方的目标粒径。该优化策略用于估计验证集的工艺参数,并说明在放大过程中选择工艺参数。这项研究的结果表明,经过训练的回归模型如何能够减少在早期工艺开发和后续放大过程中为新分子创建虚拟设计空间所需的实验工作量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/9780133/1065659991b2/11095_2022_3370_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验