Univ. Picardie Jules Verne, HEMATIM UR4666, F80025, Amiens, France; Service d'Hématologie Biologique, CHU Amiens-Picardie, Amiens, France.
APHP, Laboratoire d'Hématologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France; Biologie Intégrée du Globule Rouge, INSERM U1134, Université de Paris, Université des Antilles, Paris, France; Laboratoire d'Excellence GR-Ex, Paris, France.
EBioMedicine. 2022 Sep;83:104209. doi: 10.1016/j.ebiom.2022.104209. Epub 2022 Aug 17.
Schistocyte counts are a cornerstone of the diagnosis of thrombotic microangiopathy syndrome (TMA). Their manual quantification is complex and alternative automated methods suffer from pitfalls that limit their use. We report a method combining imaging flow cytometry (IFC) and artificial intelligence for the direct label-free and operator-independent quantification of schistocytes in whole blood.
We used 135,045 IFC images from blood acquisition among 14 patients to extract 188 features with IDEAS® software and 128 features from a convolutional neural network (CNN) with Keras framework in order to train a support vector machine (SVM) blood elements' classifier used for schistocytes quantification.
Keras features showed better accuracy (94.03%, CI: 93.75-94.31%) than ideas features (91.54%, CI: 91.21-91.87%) in recognising whole-blood elements, and together they showed the best accuracy (95.64%, CI: 95.39-95.88%). We obtained an excellent correlation (0.93, CI: 0.90-0.96) between three haematologists and our method on a cohort of 102 patient samples. All patients with schistocytosis (>1% schistocytes) were detected with excellent specificity (91.3%, CI: 82.0-96.7%) and sensitivity (100%, CI: 89.4-100.0%). We confirmed these results with a similar specificity (91.1%, CI: 78.8-97.5%) and sensitivity (100%, CI: 88.1-100.0%) on a validation cohort (n=74) analysed in an independent healthcare centre. Simultaneous analysis of 16 samples in both study centres showed a very good correlation between the 2 imaging flow cytometers (Y=1.001x).
We demonstrate that IFC can represent a reliable tool for operator-independent schistocyte quantification with no pre-analytical processing which is of most importance in emergency situations such as TMA.
None.
裂体细胞计数是血栓性微血管病综合征(TMA)诊断的基石。其手动定量较为复杂,而替代的自动化方法存在限制其使用的缺陷。我们报告了一种结合成像流式细胞术(IFC)和人工智能的方法,用于直接对全血中的裂体细胞进行无标记和无需操作人员的定量。
我们使用了 14 名患者的血液采集的 135045 个 IFC 图像,使用 IDEAS®软件提取了 188 个特征,使用 Keras 框架的卷积神经网络(CNN)提取了 128 个特征,以训练用于裂体细胞定量的支持向量机(SVM)血细胞分类器。
Keras 特征在识别全血成分方面的准确性(94.03%,CI:93.75-94.31%)优于 ideas 特征(91.54%,CI:91.21-91.87%),两者结合表现出最佳的准确性(95.64%,CI:95.39-95.88%)。我们在 102 名患者样本的队列中,从三位血液学家和我们的方法中获得了极好的相关性(0.93,CI:0.90-0.96)。我们的方法在所有检测到有裂体细胞增多症(>1%的裂体细胞)的患者中都具有极好的特异性(91.3%,CI:82.0-96.7%)和敏感性(100%,CI:89.4-100.0%)。我们在一个独立医疗中心分析的验证队列(n=74)中,也得到了类似的特异性(91.1%,CI:78.8-97.5%)和敏感性(100%,CI:88.1-100.0%),证实了这些结果。在两个研究中心同时分析 16 个样本表明,两台成像流式细胞仪之间具有非常好的相关性(Y=1.001x)。
我们证明,IFC 可以成为一种可靠的工具,用于在没有预分析处理的情况下进行无需操作人员的裂体细胞定量,这在 TMA 等紧急情况下最为重要。
无。