Suppr超能文献

计算机视觉定量分析红细胞形态异常可提供诊断、预后和发病机制方面的信息。

Computer vision quantitation of erythrocyte shape abnormalities provides diagnostic, prognostic, and mechanistic insight.

机构信息

Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.

Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.

出版信息

Blood Adv. 2023 Aug 22;7(16):4621-4630. doi: 10.1182/bloodadvances.2022008967.

Abstract

Examination of red blood cell (RBC) morphology in peripheral blood smears can help diagnose hematologic diseases, even in resource-limited settings, but this analysis remains subjective and semiquantitative with low throughput. Prior attempts to develop automated tools have been hampered by their poor reproducibility and limited clinical validation. Here, we present a novel, open-source machine-learning approach (denoted as RBC-diff) to quantify abnormal RBCs in peripheral smear images and generate an RBC morphology differential. RBC-diff cell counts showed high accuracy for single-cell classification (mean AUC, 0.93) and quantitation across smears (mean R2, 0.76 compared with experts, interexperts R2, 0.75). RBC-diff counts were concordant with the clinical morphology grading for 300 000+ images and recovered the expected pathophysiologic signals in diverse clinical cohorts. Criteria using RBC-diff counts distinguished thrombotic thrombocytopenic purpura and hemolytic uremic syndrome from other thrombotic microangiopathies, providing greater specificity than clinical morphology grading (72% vs 41%; P < .001) while maintaining high sensitivity (94% to 100%). Elevated RBC-diff schistocyte counts were associated with increased 6-month all-cause mortality in a cohort of 58 950 inpatients (9.5% mortality for schist. >1%, vs 4.7% for schist; <0.5%; P < .001) after controlling for comorbidities, demographics, clinical morphology grading, and blood count indices. RBC-diff also enabled the estimation of single-cell volume-morphology distributions, providing insight into the influence of morphology on routine blood count measures. Our codebase and expert-annotated images are included here to spur further advancement. These results illustrate that computer vision can enable rapid and accurate quantitation of RBC morphology, which may provide value in both clinical and research contexts.

摘要

外周血涂片红细胞(RBC)形态学检查有助于诊断血液系统疾病,即使在资源有限的情况下也是如此,但这种分析仍然是主观的和半定量的,且通量低。以前尝试开发自动化工具受到其可重复性差和临床验证有限的阻碍。在这里,我们提出了一种新的、开源的机器学习方法(表示为 RBC-diff),用于定量外周血涂片图像中的异常 RBC,并生成 RBC 形态学差异。RBC-diff 细胞计数在单细胞分类方面具有很高的准确性(平均 AUC,0.93)和涂片之间的定量(与专家相比,平均 R2,0.76;专家间 R2,0.75)。RBC-diff 计数与 300 000 多个图像的临床形态学分级一致,并在不同的临床队列中恢复了预期的病理生理信号。使用 RBC-diff 计数的标准区分了血栓性血小板减少性紫癜和溶血尿毒症综合征与其他血栓性微血管病,比临床形态学分级具有更高的特异性(72%对 41%;P<0.001),同时保持了高敏感性(94%至 100%)。在外周血 58 950 例住院患者队列中,升高的 RBC-diff 裂体细胞计数与 6 个月全因死亡率增加相关(裂体细胞计数 >1%的死亡率为 9.5%,裂体细胞计数 <0.5%的死亡率为 4.7%;P<0.001),在校正了合并症、人口统计学、临床形态学分级和血细胞计数指数后。RBC-diff 还可以估计单细胞体积形态分布,深入了解形态对常规血细胞计数指标的影响。我们的代码库和专家注释图像包含在此处,以激发进一步的发展。这些结果表明,计算机视觉可以实现 RBC 形态的快速准确定量,这可能在临床和研究环境中都具有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3af5/10448422/4e38dedf6210/BLOODA_ADV-2022-008967-fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验