Instituto Tecnológico Universitario Rumiñahui, Sangolquí, Ecuador.
Universidad Técnica del Norte, Ibarra, Ecuador.
Comput Intell Neurosci. 2022 Aug 12;2022:6872045. doi: 10.1155/2022/6872045. eCollection 2022.
Image segmentation and computer vision are becoming more important in computer-aided design. A computer algorithm extracts image borders, colours, and textures. It also depletes resources. Technical knowledge is required to extract information about distinctive features. There is currently no medical picture segmentation or recognition software available. The proposed model has 13 layers and uses dilated convolution and max-pooling to extract small features. Ghost model deletes the duplicated features, makes the process easier, and reduces the complexity. The Convolution Neural Network (CNN) generates a feature vector map and improves the accuracy of area or bounding box proposals. Restructuring is required for healing. As a result, convolutional neural networks segment medical images. It is possible to acquire the beginning region of a segmented medical image. The proposed model gives better results as compared to the traditional models, it gives an accuracy of 96.05, Precision 98.2, and recall 95.78. The first findings are improved by thickening and categorising the image's pixels. Morphological techniques may be used to segment medical images. Experiments demonstrate that the recommended segmentation strategy is effective. This study rethinks medical image segmentation methods.
图像分割和计算机视觉在计算机辅助设计中变得越来越重要。计算机算法可以提取图像的边界、颜色和纹理。它还会消耗资源。需要技术知识来提取有关特征的信息。目前还没有医学图像分割或识别软件。所提出的模型有 13 层,使用扩张卷积和最大池化来提取小特征。Ghost 模型删除重复的特征,使过程更容易,并降低复杂性。卷积神经网络 (CNN) 生成特征向量图,并提高区域或边界框建议的准确性。需要进行重构以进行修复。因此,卷积神经网络可以分割医学图像。可以获取分割医学图像的起始区域。与传统模型相比,所提出的模型具有更好的结果,其准确率为 96.05%,精度为 98.2%,召回率为 95.78%。通过加厚和分类图像的像素,可以改进初步发现。形态学技术可用于分割医学图像。实验表明,所推荐的分割策略是有效的。这项研究重新思考了医学图像分割方法。