Suppr超能文献

基于图卷积神经网络的毒蘑菇与可食用蘑菇小样本识别模型。

A Small Sample Recognition Model for Poisonous and Edible Mushrooms based on Graph Convolutional Neural Network.

机构信息

College of Information Technology, Jilin Agriculture University, ChangChun 130118, Jilin, China.

出版信息

Comput Intell Neurosci. 2022 Aug 12;2022:2276318. doi: 10.1155/2022/2276318. eCollection 2022.

Abstract

The automatic identification of disease types of edible mushroom crops and poisonous crops is of great significance for improving crop yield and quality. Based on the graph convolutional neural network theory, this paper constructs a graph convolutional network model for the identification of poisonous crops and edible fungi. By constructing 6 graph convolutional networks with different depths, the model uses the training mechanism of graph convolutional networks to analyze the results of disease identification and completes the automatic extraction of the disease characteristics of the poisonous crops by overfitting problem. During the simulation, firstly, the relevant PlantVillage dataset is used to obtain the pretrained model, and the parameters are adjusted to fit the dataset. The network framework is trained and parameterized with prior knowledge learned from large datasets and finally synthesized by training multiple neural network models and using direct averaging and weighting to synthesize their predictions. The experimental results show that the graph convolutional neural network model that integrates multi-scale category relationships and dense links can use dense connection technology to improve the representation ability and generalization ability of the model, and the accuracy rate generally increases by 1%-10%. The average recognition rate is about 91%, which greatly promotes the ability to identify the diseases of poisonous crops.

摘要

自动识别食用蘑菇作物和有毒作物的病害类型,对于提高作物产量和质量具有重要意义。本文基于图卷积神经网络理论,构建了用于有毒作物和食用真菌识别的图卷积网络模型。通过构建 6 个具有不同深度的图卷积网络,该模型利用图卷积网络的训练机制,对病害识别结果进行分析,通过过拟合问题完成对有毒作物病害特征的自动提取。在模拟过程中,首先使用相关的 PlantVillage 数据集获取预训练模型,并调整参数以适应数据集。使用从大型数据集学习到的先验知识对网络框架进行训练和参数化,最后通过训练多个神经网络模型并使用直接平均和加权来合成它们的预测来合成。实验结果表明,集成多尺度类别关系和密集链接的图卷积神经网络模型可以使用密集连接技术提高模型的表示能力和泛化能力,准确率普遍提高 1%-10%。平均识别率约为 91%,极大地促进了对有毒作物病害的识别能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7bb/9391115/92b6139c2f15/CIN2022-2276318.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验