Qi Kangkang, Yang Zhen, Fan Yangyang, Song Hualu, Liang Zhichao, Wang Shuai, Wang Fengyun
Agricultural Information and Economics, Shandong Academy of Agricultural Sciences, 250100, Shandong, Jinan, China.
Sci Rep. 2025 Apr 30;15(1):15214. doi: 10.1038/s41598-025-00133-z.
To address the challenges of high labor intensity and low harvesting efficiency in shiitake mushroom production and management, this article presents a novel detection and classification method based on mamba-YOLO. This method adheres to the picking standards and grade specifications for shiitake mushrooms, enabling the automatic detection and quality grading of the mushrooms. Experiments conducted on a self-constructed shiitake mushroom dataset demonstrate that mamba-YOLO achieves precision (P), recall (R), mean average precision calculated at an IoU threshold of 50% (mAP@0.5), and average precision computed over IoU thresholds ranging from 50% to 95% in increments of 5% (mAP@0.5-0.95) of 98.89%, 98.79%, 97.86%, and 89.97%. The classification accuracies for various categories-mushroom stick, plane-surface immature, plane-surface mature, cracked-surface immature, cracked-surface mature, deformed mature, and deformed immature shiitake mushrooms-are 98.1%, 98.3%, 98.2%, 98.8%, 98.5%, 96.2%, and 96.9%. These results indicate that the proposed detection and grading method effectively determines the maturity of shiitake mushrooms and categorizes them based on cap texture characteristics. The network detection speed of 8.3 ms falls within the acceptable range for real-time applications, and the model's parameters are compact at 6.1 M, facilitating easy deployment and scalability. Overall, the lightweight design, precise detection accuracy, and efficient detection speed of mamba-YOLO provide robust technical support for shiitake mushroom harvesting robots.
为应对香菇生产与管理中劳动强度大、采收效率低的挑战,本文提出了一种基于mamba - YOLO的新型检测与分类方法。该方法遵循香菇的采摘标准和等级规范,能够对香菇进行自动检测和质量分级。在自建的香菇数据集上进行的实验表明,mamba - YOLO的精度(P)、召回率(R)、在交并比(IoU)阈值为50%时计算的平均精度均值(mAP@0.5)以及在IoU阈值从50%到95%以5%增量计算的平均精度(mAP@0.5 - 0.95)分别为98.89%、98.79%、97.86%和89.97%。各类别的分类准确率——菌棒、平面未成熟、平面成熟、裂面未成熟、裂面成熟、变形成熟和变形未成熟香菇——分别为98.1%、98.3%、98.2%、98.8%、98.5%、96.2%和96.9%。这些结果表明,所提出的检测和分级方法能够有效地确定香菇的成熟度,并根据菌盖纹理特征对其进行分类。8.3毫秒的网络检测速度在实时应用的可接受范围内,且模型参数紧凑,为6.1M,便于轻松部署和扩展。总体而言,mamba - YOLO的轻量级设计、精确的检测精度和高效的检测速度为香菇采收机器人提供了强大的技术支持。