Suppr超能文献

YOLO-ISTD:一种基于YOLOv5-S的红外小目标检测方法。

YOLO-ISTD: An infrared small target detection method based on YOLOv5-S.

作者信息

Hao Ziqiang, Wang Zhuohao, Xu Xiaoyu, Jiang Zheng, Sun Zhicheng

机构信息

National Demonstration Center for Experimental Electrical, School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, China.

出版信息

PLoS One. 2024 Jun 13;19(6):e0303451. doi: 10.1371/journal.pone.0303451. eCollection 2024.

Abstract

Infrared target detection is widely used in industrial fields, such as environmental monitoring, automatic driving, etc., and the detection of weak targets is one of the most challenging research topics in this field. Due to the small size of these targets, limited information and less surrounding contextual information, it increases the difficulty of target detection and recognition. To address these issues, this paper proposes YOLO-ISTD, an improved method for infrared small target detection based on the YOLOv5-S framework. Firstly, we propose a feature extraction module called SACSP, which incorporates the Shuffle Attention mechanism and makes certain adjustments to the CSP structure, enhancing the feature extraction capability and improving the performance of the detector. Secondly, we introduce a feature fusion module called NL-SPPF. By introducing an NL-Block, the network is able to capture richer long-range features, better capturing the correlation between background information and targets, thereby enhancing the detection capability for small targets. Lastly, we propose a modified K-means clustering algorithm based on Distance-IoU (DIoU), called K-means_DIOU, to improve the accuracy of clustering and generate anchors suitable for the task. Additionally, modifications are made to the detection heads in YOLOv5-S. The original 8, 16, and 32 times downsampling detection heads are replaced with 4, 8, and 16 times downsampling detection heads, capturing more informative coarse-grained features. This enables better understanding of the overall characteristics and structure of the targets, resulting in improved representation and localization of small targets. Experimental results demonstrate significant achievements of YOLO-ISTD on the NUST-SIRST dataset, with an improvement of 8.568% in mAP@0.5 and 8.618% in mAP@0.95. Compared to the comparative models, the proposed approach effectively addresses issues of missed detections and false alarms in the detection results, leading to substantial improvements in precision, recall, and model convergence speed.

摘要

红外目标检测在工业领域有着广泛应用,如环境监测、自动驾驶等,而弱目标检测是该领域最具挑战性的研究课题之一。由于这些目标尺寸小、信息有限且周围上下文信息少,增加了目标检测与识别的难度。为解决这些问题,本文提出了YOLO-ISTD,一种基于YOLOv5-S框架的红外小目标检测改进方法。首先,我们提出了一个名为SACSP的特征提取模块,它融合了Shuffle Attention机制并对CSP结构进行了一定调整,增强了特征提取能力,提高了检测器的性能。其次,我们引入了一个名为NL-SPPF的特征融合模块。通过引入NL-Block,网络能够捕捉更丰富的长距离特征,更好地捕捉背景信息与目标之间的相关性,从而增强对小目标的检测能力。最后,我们提出了一种基于距离交并比(DIoU)的改进K均值聚类算法,称为K-means_DIOU,以提高聚类精度并生成适合该任务的锚框。此外,对YOLOv5-S中的检测头进行了修改。将原来的8倍、16倍和32倍下采样检测头替换为4倍、8倍和16倍下采样检测头,捕捉更多信息丰富的粗粒度特征。这使得能够更好地理解目标的整体特征和结构,从而改善小目标的表示和定位。实验结果表明,YOLO-ISTD在NUST-SIRST数据集上取得了显著成果,mAP@0.5提高了8.568%,mAP@0.95提高了8.618%。与对比模型相比,所提方法有效解决了检测结果中的漏检和误报问题,在精度、召回率和模型收敛速度方面有显著提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5780/11175441/b5d03ecf4988/pone.0303451.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验