Suppr超能文献

基于多阈值峰值检测的计算光子计数用于快速荧光寿命成像显微镜技术

Computational Photon Counting Using Multithreshold Peak Detection for Fast Fluorescence Lifetime Imaging Microscopy.

作者信息

Sorrells Janet E, Iyer Rishyashring R, Yang Lingxiao, Martin Elisabeth M, Wang Geng, Tu Haohua, Marjanovic Marina, Boppart Stephen A

机构信息

Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

出版信息

ACS Photonics. 2022 Aug 17;9(8):2748-2755. doi: 10.1021/acsphotonics.2c00505. Epub 2022 Jul 12.

Abstract

Time-resolved photon counting methods have a finite bandwidth that restricts the acquisition speed of techniques like fluorescence lifetime imaging microscopy (FLIM). To enable faster imaging, computational methods can be employed to count photons when the output of a detector is directly digitized at a high sampling rate. Here, we present computational photon counting using a hybrid photodetector in conjunction with multithreshold peak detection to count instances where one or more photons arrive at the detector within the detector response time. This method can be used to distinguish up to five photon counts per digitized point, whereas previous demonstrations of computational photon counting on data acquired with photomultiplier tubes have only counted one photon at a time. We demonstrate in both freely moving and a human breast cancer cell line undergoing apoptosis that this novel multithreshold peak detection method can accurately characterize the intensity and fluorescence lifetime of samples producing photon rates up to 223%, higher than previously demonstrated photon counting FLIM systems.

摘要

时间分辨光子计数方法具有有限的带宽,这限制了诸如荧光寿命成像显微镜(FLIM)等技术的采集速度。为了实现更快的成像,当探测器的输出以高采样率直接数字化时,可以采用计算方法来计数光子。在此,我们展示了使用混合光电探测器结合多阈值峰值检测的计算光子计数,以计数在探测器响应时间内一个或多个光子到达探测器的情况。该方法可用于区分每个数字化点多达五个光子计数,而之前在使用光电倍增管采集的数据上进行的计算光子计数演示一次仅计数一个光子。我们在自由移动的动物以及正在经历凋亡的人乳腺癌细胞系中均证明,这种新型的多阈值峰值检测方法能够准确表征产生高达223%光子率的样品的强度和荧光寿命,这一光子率高于之前展示的光子计数FLIM系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9cf/9389606/c2bd82a9723c/ph2c00505_0002.jpg

相似文献

1
Computational Photon Counting Using Multithreshold Peak Detection for Fast Fluorescence Lifetime Imaging Microscopy.
ACS Photonics. 2022 Aug 17;9(8):2748-2755. doi: 10.1021/acsphotonics.2c00505. Epub 2022 Jul 12.
3
Analog multiplexing of a laser clock and computational photon counting for fast fluorescence lifetime imaging microscopy.
Biomed Opt Express. 2024 Mar 4;15(4):2048-2062. doi: 10.1364/BOE.514813. eCollection 2024 Apr 1.
4
Lightsheet fluorescence lifetime imaging microscopy with wide-field time-correlated single photon counting.
J Biophotonics. 2020 Feb;13(2):e201960099. doi: 10.1002/jbio.201960099. Epub 2019 Nov 25.
5
Real-time pixelwise phasor analysis for video-rate two-photon fluorescence lifetime imaging microscopy.
Biomed Opt Express. 2021 Jun 11;12(7):4003-4019. doi: 10.1364/BOE.424533. eCollection 2021 Jul 1.
6
Fluorescence lifetime tracking and imaging of single moving particles assisted by a low-photon-count analysis algorithm.
Biomed Opt Express. 2023 Mar 29;14(4):1718-1731. doi: 10.1364/BOE.485729. eCollection 2023 Apr 1.
7
Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed.
Biomed Opt Express. 2016 Mar 18;7(4):1385-99. doi: 10.1364/BOE.7.001385. eCollection 2016 Apr 1.
8
Analog mean-delay method for high-speed fluorescence lifetime measurement.
Opt Express. 2009 Feb 16;17(4):2834-49. doi: 10.1364/oe.17.002834.
9
Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution.
J Microsc. 2002 Jun;206(Pt 3):218-24. doi: 10.1046/j.1365-2818.2002.01031.x.
10
Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector.
Proc SPIE Int Soc Opt Eng. 2006;6372. doi: 10.1117/12.686429. Epub 2006 Oct 25.

引用本文的文献

3
Gentle Label-Free Nonlinear Optical Imaging Relaxes Linear-Absorption-Mediated Triplet.
Adv Sci (Weinh). 2025 Aug;12(32):e15648. doi: 10.1002/advs.202415648. Epub 2025 May 28.
5
Pixelation with concentration-encoded effective photons for quantitative molecular optical sectioning microscopy.
Laser Photon Rev. 2024 Oct;18(10). doi: 10.1002/lpor.202400031. Epub 2024 Jul 3.
6
Endogenous mitochondrial NAD(P)H fluorescence can predict lifespan.
Commun Biol. 2024 Nov 21;7(1):1551. doi: 10.1038/s42003-024-07243-w.
7
Metabolic light absorption, scattering, and emission (MetaLASE) microscopy.
Sci Adv. 2024 Oct 18;10(42):eadl5729. doi: 10.1126/sciadv.adl5729.
8
Inspiring a convergent engineering approach to measure and model the tissue microenvironment.
Heliyon. 2024 Jun 8;10(12):e32546. doi: 10.1016/j.heliyon.2024.e32546. eCollection 2024 Jun 30.
9
Large field-of-view metabolic profiling of murine brain tissue following morphine incubation using label-free multiphoton microscopy.
J Neurosci Methods. 2024 Aug;408:110171. doi: 10.1016/j.jneumeth.2024.110171. Epub 2024 May 21.
10
Programmable hyperspectral coherent anti-Stokes Raman scattering microscopy.
Opt Lett. 2024 May 1;49(9):2513-2516. doi: 10.1364/OL.521864.

本文引用的文献

4
Real-time pixelwise phasor analysis for video-rate two-photon fluorescence lifetime imaging microscopy.
Biomed Opt Express. 2021 Jun 11;12(7):4003-4019. doi: 10.1364/BOE.424533. eCollection 2021 Jul 1.
6
Intraoperative Label-Free Multimodal Nonlinear Optical Imaging for Point-of-Procedure Cancer Diagnostics.
IEEE J Sel Top Quantum Electron. 2021 Jul-Aug;27(4). doi: 10.1109/jstqe.2021.3054578. Epub 2021 Jan 26.
8
Digital implementation of TCSPC.
Opt Lett. 2020 Apr 1;45(7):1615-1618. doi: 10.1364/OL.384461.
10
Tracking metabolic dynamics of apoptosis with high-speed two-photon fluorescence lifetime imaging microscopy.
Biomed Opt Express. 2019 Nov 21;10(12):6408-6421. doi: 10.1364/BOE.10.006408. eCollection 2019 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验