Ari Eszter, Vásárhelyi Bálint Márk, Kemenesi Gábor, Tóth Gábor Endre, Zana Brigitta, Somogyi Balázs, Lanszki Zsófia, Röst Gergely, Jakab Ferenc, Papp Balázs, Kintses Bálint
HCEMM-BRC, Metabolic Systems Biology Research Group, Temesvári krt. 62, Szeged 6726, Hungary.
Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, Szeged 6726, Hungary.
Virus Evol. 2022 Jul 27;8(2):veac069. doi: 10.1093/ve/veac069. eCollection 2022 Jul.
Retrospective evaluation of past waves of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic is key for designing optimal interventions against future waves and novel pandemics. Here, we report on analysing genome sequences of SARS-CoV-2 from the first two waves of the epidemic in 2020 in Hungary, mirroring a suppression and a mitigation strategy, respectively. Our analysis reveals that the two waves markedly differed in viral diversity and transmission patterns. Specifically, unlike in several European areas or in the USA, we have found no evidence for early introduction and cryptic transmission of the virus in the first wave of the pandemic in Hungary. Despite the introduction of multiple viral lineages, extensive community spread was prevented by a timely national lockdown in March 2020. In sharp contrast, the majority of the cases in the much larger second wave can be linked to a single transmission lineage of the pan-European B.1.160 variant. This lineage was introduced unexpectedly early, followed by a 2-month-long cryptic transmission before a soar of detected cases in September 2020. Epidemic analysis has revealed that the dominance of this lineage in the second wave was not associated with an intrinsic transmission advantage. This finding is further supported by the rapid replacement of B.1.160 by the alpha variant (B.1.1.7) that launched the third wave of the epidemic in February 2021. Overall, these results illustrate how the founder effect in combination with the cryptic transmission, instead of repeated international introductions or higher transmissibility, can govern viral diversity.
对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)疫情过去几波情况进行回顾性评估,对于设计针对未来疫情波次和新型大流行的最佳干预措施至关重要。在此,我们报告了对2020年匈牙利疫情前两波SARS-CoV-2基因组序列的分析,这两波疫情分别反映了抑制策略和缓解策略。我们的分析表明,这两波疫情在病毒多样性和传播模式上存在显著差异。具体而言,与欧洲多个地区或美国不同,我们没有发现匈牙利第一波疫情中有病毒早期引入和隐匿传播的证据。尽管引入了多个病毒谱系,但2020年3月及时实施的全国封锁措施防止了病毒在社区的广泛传播。形成鲜明对比的是,规模大得多的第二波疫情中的大多数病例可追溯到泛欧B.1.160变异株的单一传播谱系。该谱系意外地很早就被引入,随后在2020年9月检测到的病例激增之前有长达2个月的隐匿传播。疫情分析表明,该谱系在第二波疫情中的主导地位与内在传播优势无关。这一发现得到了2021年2月引发第三波疫情的α变异株(B.1.1.7)迅速取代B.1.160的进一步支持。总体而言,这些结果说明了奠基者效应与隐匿传播如何而非反复的国际引入或更高的传播性能够决定病毒多样性。