IEEE J Biomed Health Inform. 2024 Jun;28(6):3411-3421. doi: 10.1109/JBHI.2024.3368042. Epub 2024 Jun 6.
Exercise monitoring with low-cost wearables could improve the efficacy of remote physical-therapy prescriptions by tracking compliance and informing the delivery of tailored feedback. While a multitude of commercial wearables can detect activities of daily life, such as walking and running, they cannot accurately detect physical-therapy exercises. The goal of this study was to build open-source classifiers for remote physical-therapy monitoring and provide insight on how data collection choices may impact classifier performance.
We trained and evaluated multi-class classifiers using data from 19 healthy adults who performed 37 exercises while wearing 10 inertial measurement units (IMUs) on the chest, pelvis, wrists, thighs, shanks, and feet. We investigated the effect of sensor density, location, type, sampling frequency, output granularity, feature engineering, and training-data size on exercise-classification performance.
Exercise groups (n = 10) could be classified with 96% accuracy using a set of 10 IMUs and with 89% accuracy using a single pelvis-worn IMU. Multiple sensor modalities (i.e., accelerometers and gyroscopes), high sampling frequencies, and more data from the same population did not improve model performance, but in the future data from diverse populations and better feature engineering could.
Given the growing demand for exercise monitoring systems, our sensitivity analyses, along with open-source tools and data, should reduce barriers for product developers, who are balancing accuracy with product formfactor, and increase transparency and trust in clinicians and patients.
通过跟踪依从性并提供定制反馈,使用低成本可穿戴设备进行运动监测可以提高远程物理治疗方案的疗效。虽然许多商业可穿戴设备可以检测日常生活活动,如步行和跑步,但它们无法准确检测物理治疗运动。本研究的目的是构建用于远程物理治疗监测的开源分类器,并深入了解数据收集选择可能如何影响分类器性能。
我们使用来自 19 名健康成年人的数据来训练和评估多类分类器,这些成年人在胸部、骨盆、手腕、大腿、小腿和脚部佩戴了 10 个惯性测量单元(IMU),进行了 37 次运动。我们研究了传感器密度、位置、类型、采样频率、输出粒度、特征工程和训练数据大小对运动分类性能的影响。
使用一组 10 个 IMU 可以以 96%的准确率对运动组(n = 10)进行分类,使用单个骨盆佩戴的 IMU 可以以 89%的准确率进行分类。多种传感器模式(即加速度计和陀螺仪)、高采样频率和来自同一人群的更多数据并没有提高模型性能,但将来来自不同人群的数据和更好的特征工程可能会提高。
鉴于对运动监测系统的需求不断增长,我们的敏感性分析以及开源工具和数据应降低产品开发人员的障碍,他们需要在准确性和产品外形尺寸之间进行平衡,并增加临床医生和患者的透明度和信任。