Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran.
Laboratory of System Biology, Bioinformatics & Artificial Intelligent in Medicine (LBB&AI), Faculty of Mathematics and Computer Science, Kharazmi University, Tehran 1571914911, Iran.
Bioinformatics. 2023 Aug 1;39(8). doi: 10.1093/bioinformatics/btad438.
Screening bioactive compounds in cancer cell lines receive more attention. Multidisciplinary drugs or drug combinations have a more effective role in treatments and selectively inhibit the growth of cancer cells.
Hence, we propose a new deep learning-based approach for drug combination synergy prediction called DeepTraSynergy. Our proposed approach utilizes multimodal input including drug-target interaction, protein-protein interaction, and cell-target interaction to predict drug combination synergy. To learn the feature representation of drugs, we have utilized transformers. It is worth noting that our approach is a multitask approach that predicts three outputs including the drug-target interaction, its toxic effect, and drug combination synergy. In our approach, drug combination synergy is the main task and the two other ones are the auxiliary tasks that help the approach to learn a better model. In the proposed approach three loss functions are defined: synergy loss, toxic loss, and drug-protein interaction loss. The last two loss functions are designed as auxiliary losses to help learn a better solution. DeepTraSynergy outperforms the classic and state-of-the-art models in predicting synergistic drug combinations on the two latest drug combination datasets. The DeepTraSynergy algorithm achieves accuracy values of 0.7715 and 0.8052 (an improvement over other approaches) on the DrugCombDB and Oncology-Screen datasets, respectively. Also, we evaluate the contribution of each component of DeepTraSynergy to show its effectiveness in the proposed method. The introduction of the relation between proteins (PPI networks) and drug-protein interaction significantly improves the prediction of synergistic drug combinations.
The source code and data are available at https://github.com/fatemeh-rafiei/DeepTraSynergy.
在癌细胞系中筛选生物活性化合物受到了更多的关注。多学科药物或药物组合在治疗中具有更有效的作用,并能选择性地抑制癌细胞的生长。
因此,我们提出了一种新的基于深度学习的药物组合协同预测方法,称为 DeepTraSynergy。我们提出的方法利用包括药物-靶标相互作用、蛋白质-蛋白质相互作用和细胞-靶标相互作用在内的多模态输入来预测药物组合协同作用。为了学习药物的特征表示,我们利用了转换器。值得注意的是,我们的方法是一种多任务方法,预测三个输出,包括药物-靶标相互作用、其毒性作用和药物组合协同作用。在我们的方法中,药物组合协同作用是主要任务,另外两个是辅助任务,帮助方法学习更好的模型。在提出的方法中,定义了三个损失函数:协同损失、毒性损失和药物-蛋白质相互作用损失。后两个损失函数被设计为辅助损失,以帮助学习更好的解决方案。DeepTraSynergy 在预测最新的两个药物组合数据集上的协同药物组合方面优于经典和最先进的模型。DeepTraSynergy 算法在 DrugCombDB 和 Oncology-Screen 数据集上的准确率分别为 0.7715 和 0.8052(优于其他方法)。此外,我们还评估了 DeepTraSynergy 的每个组成部分对展示其在提出的方法中的有效性的贡献。引入蛋白质之间的关系(PPI 网络)和药物-蛋白质相互作用显著提高了协同药物组合的预测。
源代码和数据可在 https://github.com/fatemeh-rafiei/DeepTraSynergy 上获得。