School of Computer Science and Technology, Donghua University, Shanghai 201600, China.
School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China.
Bioinformatics. 2023 Oct 3;39(10). doi: 10.1093/bioinformatics/btad607.
Drug combination therapy has exhibited remarkable therapeutic efficacy and has gradually become a promising clinical treatment strategy of complex diseases such as cancers. As the related databases keep expanding, computational methods based on deep learning model have become powerful tools to predict synergistic drug combinations. However, predicting effective synergistic drug combinations is still a challenge due to the high complexity of drug combinations, the lack of biological interpretability, and the large discrepancy in the response of drug combinations in vivo and in vitro biological systems.
Here, we propose DGSSynADR, a new deep learning method based on global structured features of drugs and targets for predicting synergistic anticancer drug combinations. DGSSynADR constructs a heterogeneous graph by integrating the drug-drug, drug-target, protein-protein interactions and multi-omics data, utilizes a low-rank global attention (LRGA) model to perform global weighted aggregation of graph nodes and learn the global structured features of drugs and targets, and then feeds the embedded features into a bilinear predictor to predict the synergy scores of drug combinations in different cancer cell lines. Specifically, LRGA network brings better model generalization ability, and effectively reduces the complexity of graph computation. The bilinear predictor facilitates the dimension transformation of the features and fuses the feature representation of the two drugs to improve the prediction performance. The loss function Smooth L1 effectively avoids gradient explosion, contributing to better model convergence. To validate the performance of DGSSynADR, we compare it with seven competitive methods. The comparison results demonstrate that DGSSynADR achieves better performance. Meanwhile, the prediction of DGSSynADR is validated by previous findings in case studies. Furthermore, detailed ablation studies indicate that the one-hot coding drug feature, LRGA model and bilinear predictor play a key role in improving the prediction performance.
DGSSynADR is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.com/DHUDBlab/DGSSynADR.
药物联合治疗显示出显著的治疗效果,逐渐成为癌症等复杂疾病的一种有前途的临床治疗策略。随着相关数据库的不断扩展,基于深度学习模型的计算方法已成为预测协同药物组合的有力工具。然而,由于药物组合的高度复杂性、缺乏生物学可解释性以及药物组合在体内和体外生物系统中的反应差异较大,预测有效的协同药物组合仍然是一个挑战。
在这里,我们提出了一种新的基于药物和靶标全局结构特征的深度学习方法 DGSSynADR,用于预测协同抗癌药物组合。DGSSynADR 通过整合药物-药物、药物-靶标、蛋白质-蛋白质相互作用和多组学数据构建异构图,利用低秩全局注意力(LRGA)模型对图节点进行全局加权聚合,学习药物和靶标全局结构特征,然后将嵌入特征输入双线性预测器,以预测不同癌细胞系中药物组合的协同评分。具体来说,LRGA 网络带来了更好的模型泛化能力,有效地降低了图计算的复杂性。双线性预测器促进了特征的维度变换,并融合了两种药物的特征表示,提高了预测性能。平滑 L1 损失函数有效地避免了梯度爆炸,有助于更好的模型收敛。为了验证 DGSSynADR 的性能,我们将其与七种竞争方法进行了比较。比较结果表明,DGSSynADR 具有更好的性能。同时,案例研究中的先前发现验证了 DGSSynADR 的预测。此外,详细的消融研究表明,独热编码药物特征、LRGA 模型和双线性预测器在提高预测性能方面起着关键作用。
DGSSynADR 是用 Python 编写的,使用 Pytorch 机器学习库实现的,可在 https://github.com/DHUDBlab/DGSSynADR 上免费获取。