Suppr超能文献

利用日本患者理赔数据构建的医疗服务提供商网络中的区域医疗机构间合作。

Regional medical inter-institutional cooperation in medical provider network constructed using patient claims data from Japan.

机构信息

Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan.

Graduate School of Medicine, Kyoto University, Kyoto, Japan.

出版信息

PLoS One. 2022 Aug 24;17(8):e0266211. doi: 10.1371/journal.pone.0266211. eCollection 2022.

Abstract

The aging world population requires a sustainable and high-quality healthcare system. To examine the efficiency of medical cooperation, medical provider and physician networks were constructed using patient claims data. Previous studies have shown that these networks contain information on medical cooperation. However, the usage patterns of multiple medical providers in a series of medical services have not been considered. In addition, these studies used only general network features to represent medical cooperation, but their expressive ability was low. To overcome these limitations, we analyzed the medical provider network to examine its overall contribution to the quality of healthcare provided by cooperation between medical providers in a series of medical services. This study focused on: i) the method of feature extraction from the network, ii) incorporation of the usage pattern of medical providers, and iii) expressive ability of the statistical model. Femoral neck fractures were selected as the target disease. To build the medical provider networks, we analyzed the patient claims data from a single prefecture in Japan between January 1, 2014 and December 31, 2019. We considered four types of models. Models 1 and 2 use node strength and linear regression, with Model 2 also incorporating patient age as an input. Models 3 and 4 use feature representation by node2vec with linear regression and regression tree ensemble, a machine learning method. The results showed that medical providers with higher levels of cooperation reduce the duration of hospital stay. The overall contribution of the medical cooperation to the duration of hospital stay extracted from the medical provider network using node2vec is approximately 20%, which is approximately 20 times higher than the model using strength.

摘要

人口老龄化要求建立一个可持续且高质量的医疗体系。为了评估医疗合作的效率,我们利用患者理赔数据构建了医疗服务提供方和医生网络。先前的研究表明,这些网络包含了医疗合作的相关信息。然而,在一系列医疗服务中,多个医疗服务提供方的使用模式尚未被考虑到。此外,这些研究仅使用一般网络特征来表示医疗合作,但其表达能力有限。为了克服这些局限性,我们分析了医疗服务提供方网络,以研究其在一系列医疗服务中医疗服务提供方合作提供的医疗质量方面的整体贡献。本研究重点关注:i)从网络中提取特征的方法,ii)医疗服务提供方使用模式的纳入,以及 iii)统计模型的表达能力。我们选择股骨颈骨折作为目标疾病。为了构建医疗服务提供方网络,我们分析了日本某一县在 2014 年 1 月 1 日至 2019 年 12 月 31 日期间的患者理赔数据。我们考虑了四种模型。模型 1 和 2 使用节点强度和线性回归,模型 2 还将患者年龄作为输入。模型 3 和 4 使用 node2vec 进行特征表示,然后使用线性回归和回归树集成(一种机器学习方法)。结果表明,合作程度较高的医疗服务提供方可以缩短患者的住院时间。使用 node2vec 从医疗服务提供方网络中提取的医疗合作对住院时间的总体贡献约为 20%,大约是使用强度的 20 倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/179c/9401144/20a3dc04672a/pone.0266211.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验