VA Health Services Research & Development, Center for Innovation to Implementation, VA Palo Alto Health Care System, Palo Alto, California, USA
VA Health Services Research & Development, Center for Innovation to Implementation, VA Palo Alto Health Care System, Palo Alto, California, USA.
BMJ Open. 2022 Aug 24;12(8):e065088. doi: 10.1136/bmjopen-2022-065088.
The state-of-the-art 3-step Theory of Suicide (3ST) describes why people consider suicide and who will act on their suicidal thoughts and attempt suicide. The central concepts of 3ST-psychological pain, hopelessness, connectedness, and capacity for suicide-are among the most important drivers of suicidal behaviour but they are missing from clinical suicide risk prediction models in use at the US Veterans Health Administration (VHA). These four concepts are not systematically recorded in structured fields of VHA's electronic healthcare records. Therefore, this study will develop a domain-specific ontology that will enable automated extraction of these concepts from clinical progress notes using natural language processing (NLP), and test whether NLP-based predictors for these concepts improve accuracy of existing VHA suicide risk prediction models.
Our mixed-method study has an exploratory sequential design where a qualitative component (aim 1) will inform quantitative analyses (aims 2 and 3). For aim 1, subject matter experts will manually annotate progress notes of clinical encounters with veterans who attempted or died by suicide to develop a domain-specific ontology for the 3ST concepts. During aim 2, we will use NLP to machine-annotate clinical progress notes and derive longitudinal representations for each patient with respect to the presence and intensity of hopelessness, psychological pain, connectedness and capacity for suicide in temporal proximity of suicide attempts and deaths by suicide. These longitudinal representations will be evaluated during aim 3 for their ability to improve existing VHA prediction models of suicide and suicide attempts, STORM (Stratification Tool for Opioid Risk Mitigation) and REACHVET (Recovery Engagement and Coordination for Health - Veterans Enhanced Treatment).
Ethics approval for this study was granted by the Stanford University Institutional Review Board and the Research and Development Committee of the VA Palo Alto Health Care System. Results of the study will be disseminated through several outlets, including peer-reviewed publications and presentations at national conferences.
最先进的三步自杀理论(3ST)描述了人们为什么会考虑自杀,以及谁会对自杀念头和自杀企图采取行动。3ST 的核心概念——心理痛苦、绝望、联系和自杀能力——是自杀行为最重要的驱动因素之一,但它们在目前美国退伍军人事务部(VA)使用的临床自杀风险预测模型中缺失。这四个概念没有在 VA 的电子医疗记录的结构化字段中系统地记录。因此,本研究将开发一个特定领域的本体,使自然语言处理(NLP)能够从临床进展记录中自动提取这些概念,并测试基于 NLP 的这些概念的预测因子是否能提高现有 VA 自杀风险预测模型的准确性。
我们的混合方法研究采用探索性序贯设计,其中定性部分(目标 1)将为定量分析(目标 2 和 3)提供信息。在目标 1 中,主题专家将手动注释有自杀企图或自杀死亡的退伍军人的临床就诊记录,以开发用于 3ST 概念的特定领域本体。在目标 2 中,我们将使用 NLP 对临床进展记录进行机器注释,并为每个患者生成关于绝望、心理痛苦、联系和自杀能力的纵向表示,这些纵向表示与自杀企图和自杀死亡的时间接近。在目标 3 中,将评估这些纵向表示在改善现有 VA 自杀和自杀企图预测模型(STORM(阿片类药物风险缓解分层工具)和 REACHVET(退伍军人增强治疗的康复参与和协调))方面的能力。
斯坦福大学机构审查委员会和 VA 帕洛阿尔托医疗保健系统的研究和发展委员会已批准本研究的伦理。该研究的结果将通过多种渠道传播,包括同行评议的出版物和在全国会议上的演讲。