Adekkanattu Prakash, Furmanchuk Al'ona, Wu Yonghui, Pathak Aman, Patra Braja Gopal, Bost Sarah, Morrow Destinee, Wang Grace Hsin-Min, Yang Yuyang, Forrest Noah James, Luo Yuan, Walunas Theresa L, Lo-Ciganic Weihsuan, Gelad Walid, Bian Jiang, Bao Yuhua, Weiner Mark, Oslin David, Pathak Jyotishman
Weill Cornell Medicine, New York, NY, USA.
Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
NPJ Digit Med. 2024 Sep 28;7(1):260. doi: 10.1038/s41746-024-01266-7.
Personal and family history of suicidal thoughts and behaviors (PSH and FSH, respectively) are significant risk factors associated with suicides. Research is limited in automatic identification of such data from clinical notes in Electronic Health Records. This study developed deep learning (DL) tools utilizing transformer models (Bio_ClinicalBERT and GatorTron) to detect PSH and FSH in clinical notes derived from three academic medical centers, and compared their performance with a rule-based natural language processing tool. For detecting PSH, the rule-based approach obtained an F1-score of 0.75 ± 0.07, while the Bio_ClinicalBERT and GatorTron DL tools scored 0.83 ± 0.09 and 0.84 ± 0.07, respectively. For detecting FSH, the rule-based approach achieved an F1-score of 0.69 ± 0.11, compared to 0.89 ± 0.10 for Bio_ClinicalBERT and 0.92 ± 0.07 for GatorTron. Across sites, the DL tools identified more than 80% of patients at elevated risk for suicide who remain undiagnosed and untreated.
自杀念头和行为的个人及家族史(分别为PSH和FSH)是与自杀相关的重要风险因素。从电子健康记录中的临床记录自动识别此类数据的研究有限。本研究开发了利用变压器模型(Bio_ClinicalBERT和GatorTron)的深度学习(DL)工具,以检测来自三个学术医疗中心的临床记录中的PSH和FSH,并将它们的性能与基于规则的自然语言处理工具进行比较。对于检测PSH,基于规则的方法获得的F1分数为0.75±0.07,而Bio_ClinicalBERT和GatorTron DL工具的分数分别为0.83±0.09和0.84±0.07。对于检测FSH,基于规则的方法获得的F1分数为0.69±0.11,而Bio_ClinicalBERT为0.89±0.10,GatorTron为0.92±0.07。在各个地点,DL工具识别出超过80%有自杀风险升高但仍未被诊断和治疗的患者。