Suppr超能文献

奥密克戎 SARS-CoV-2 突变稳定了刺突上 RBD 的构象,导致非 RBM 结合的单克隆抗体逃逸。

Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape.

机构信息

CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Nat Commun. 2022 Aug 24;13(1):4958. doi: 10.1038/s41467-022-32665-7.

Abstract

Omicron SARS-CoV-2 is rapidly spreading worldwide. To delineate the impact of emerging mutations on spike's properties, we performed systematic structural analyses on apo Omicron spike and its complexes with human ACE2 or S309 neutralizing antibody (NAb) by cryo-EM. The Omicron spike preferentially adopts the one-RBD-up conformation both before and after ACE2 binding, which is in sharp contrast to the orchestrated conformational changes to create more up-RBDs upon ACE2 binding as observed in the prototype and other four variants of concern (VOCs). Furthermore, we found that S371L, S373P and S375F substitutions enhance the stability of the one-RBD-up conformation to prevent exposing more up-RBDs triggered by ACE2 binding. The increased stability of the one-RBD-up conformation restricts the accessibility of S304 NAb, which targets a cryptic epitope in the closed conformation, thus facilitating the immune evasion by Omicron. These results expand our understanding of Omicron spike's conformation, receptor binding and antibody evasion mechanism.

摘要

奥密克戎 SARS-CoV-2 正在全球迅速传播。为了阐明新出现的突变对刺突蛋白特性的影响,我们通过冷冻电镜对无配体奥密克戎刺突蛋白及其与人 ACE2 或 S309 中和抗体(NAb)的复合物进行了系统的结构分析。奥密克戎刺突蛋白在与 ACE2 结合前后优先采用一个 RBD 朝上的构象,这与在原型和其他四个关注变体(VOC)中观察到的 ACE2 结合后通过协调构象变化来产生更多朝上 RBD 的情况形成鲜明对比。此外,我们发现 S371L、S373P 和 S375F 取代增强了一个 RBD 朝上构象的稳定性,以防止 ACE2 结合触发更多朝上 RBD 的暴露。一个 RBD 朝上构象的稳定性增加限制了 S304 NAb 的可及性,S304 NAb 靶向封闭构象中的隐蔽表位,从而促进了奥密克戎的免疫逃逸。这些结果扩展了我们对奥密克戎刺突蛋白构象、受体结合和抗体逃逸机制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a537/9402587/086fa9bb2674/41467_2022_32665_Fig1_HTML.jpg

相似文献

3
Structural basis and analysis of hamster ACE2 binding to different SARS-CoV-2 spike RBDs.
J Virol. 2024 Mar 19;98(3):e0115723. doi: 10.1128/jvi.01157-23. Epub 2024 Feb 2.
4
Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains.
PLoS Pathog. 2022 Nov 18;18(11):e1010951. doi: 10.1371/journal.ppat.1010951. eCollection 2022 Nov.
6
Effect of SARS-CoV-2 B.1.1.7 mutations on spike protein structure and function.
Nat Struct Mol Biol. 2021 Sep;28(9):731-739. doi: 10.1038/s41594-021-00652-z. Epub 2021 Aug 12.
9
Epitope Classification and RBD Binding Properties of Neutralizing Antibodies Against SARS-CoV-2 Variants of Concern.
Front Immunol. 2021 Jun 4;12:691715. doi: 10.3389/fimmu.2021.691715. eCollection 2021.

引用本文的文献

1
Spike mutations that affect the function and antigenicity of recent KP.3.1.1-like SARS-CoV-2 variants.
bioRxiv. 2025 Aug 19:2025.08.18.671001. doi: 10.1101/2025.08.18.671001.
3
Gene hydrogel platforms for targeted skin therapy: bridging hereditary disorders, chronic wounds, and immune related skin diseases.
Front Drug Deliv. 2025 Jul 1;5:1598145. doi: 10.3389/fddev.2025.1598145. eCollection 2025.
4
ACE2 Receptor and Antibody Binding to SARS-CoV‑2 Spikes and Virions by Single-Molecule Fluorescence.
ACS Omega. 2025 Jul 31;10(31):34844-34856. doi: 10.1021/acsomega.5c03887. eCollection 2025 Aug 12.
5
Computational nanobody design through deep generative modeling and epitope landscape profiling.
Comput Struct Biotechnol J. 2025 Jul 30;27:3443-3455. doi: 10.1016/j.csbj.2025.07.052. eCollection 2025.
6
Optimizing the breadth of SARS-CoV-2-neutralizing antibodies in vivo and in silico.
Hum Vaccin Immunother. 2025 Dec;21(1):2526873. doi: 10.1080/21645515.2025.2526873. Epub 2025 Jul 21.
7
Exploring the Intrinsic Structural Plasticity and Conformational Dynamics of Human Beta Coronavirus Spike Glycoproteins.
J Chem Inf Model. 2025 Jul 28;65(14):7712-7733. doi: 10.1021/acs.jcim.5c00990. Epub 2025 Jul 17.

本文引用的文献

2
SARS-CoV-2 Omicron variant: Immune escape and vaccine development.
MedComm (2020). 2022 Mar 16;3(1):e126. doi: 10.1002/mco2.126. eCollection 2022 Mar.
3
Cryo-EM structure of a SARS-CoV-2 omicron spike protein ectodomain.
Nat Commun. 2022 Mar 3;13(1):1214. doi: 10.1038/s41467-022-28882-9.
4
Cryo-EM structure of the SARS-CoV-2 Omicron spike.
Cell Rep. 2022 Mar 1;38(9):110428. doi: 10.1016/j.celrep.2022.110428. Epub 2022 Feb 7.
5
Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody.
Science. 2022 Mar 4;375(6584):1048-1053. doi: 10.1126/science.abn8863. Epub 2022 Feb 8.
6
Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron.
Cell. 2022 Mar 3;185(5):860-871.e13. doi: 10.1016/j.cell.2022.01.019. Epub 2022 Jan 25.
7
Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2.
Cell. 2022 Feb 17;185(4):630-640.e10. doi: 10.1016/j.cell.2022.01.001. Epub 2022 Jan 6.
8
Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants.
Nature. 2022 Mar;603(7903):919-925. doi: 10.1038/s41586-022-04466-x. Epub 2022 Jan 28.
9
Effects of a Prolonged Booster Interval on Neutralization of Omicron Variant.
N Engl J Med. 2022 Mar 3;386(9):894-896. doi: 10.1056/NEJMc2119426. Epub 2022 Jan 26.
10
Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement.
Science. 2022 Feb 25;375(6583):864-868. doi: 10.1126/science.abn8652. Epub 2022 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验