文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

T 细胞中 RASA2 的缺失增强了抗原敏感性和长期功能。

RASA2 ablation in T cells boosts antigen sensitivity and long-term function.

机构信息

Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.

Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.

出版信息

Nature. 2022 Sep;609(7925):174-182. doi: 10.1038/s41586-022-05126-w. Epub 2022 Aug 24.


DOI:10.1038/s41586-022-05126-w
PMID:36002574
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9433322/
Abstract

The efficacy of adoptive T cell therapies for cancer treatment can be limited by suppressive signals from both extrinsic factors and intrinsic inhibitory checkpoints. Targeted gene editing has the potential to overcome these limitations and enhance T cell therapeutic function. Here we performed multiple genome-wide CRISPR knock-out screens under different immunosuppressive conditions to identify genes that can be targeted to prevent T cell dysfunction. These screens converged on RASA2, a RAS GTPase-activating protein (RasGAP) that we identify as a signalling checkpoint in human T cells, which is downregulated upon acute T cell receptor stimulation and can increase gradually with chronic antigen exposure. RASA2 ablation enhanced MAPK signalling and chimeric antigen receptor (CAR) T cell cytolytic activity in response to target antigen. Repeated tumour antigen stimulations in vitro revealed that RASA2-deficient T cells show increased activation, cytokine production and metabolic activity compared with control cells, and show a marked advantage in persistent cancer cell killing. RASA2-knockout CAR T cells had a competitive fitness advantage over control cells in the bone marrow in a mouse model of leukaemia. Ablation of RASA2 in multiple preclinical models of T cell receptor and CAR T cell therapies prolonged survival in mice xenografted with either liquid or solid tumours. Together, our findings highlight RASA2 as a promising target to enhance both persistence and effector function in T cell therapies for cancer treatment.

摘要

嵌合抗原受体(CAR)T 细胞疗法在治疗多种血液肿瘤和实体瘤方面取得了显著的临床疗效。然而,大多数患者会出现疾病复发,这主要是由于肿瘤的免疫逃逸机制、CAR T 细胞的扩增和持久性有限以及细胞因子释放综合征(CRS)等毒性反应。为了提高 CAR T 细胞疗法的疗效和安全性,人们提出了许多策略,包括改善 CAR 结构、增强 T 细胞的激活和扩增、降低免疫原性、联合免疫检查点阻断以及过继性 T 细胞疗法等。

过继性 T 细胞疗法是一种利用患者自身的 T 细胞来治疗疾病的方法,它可以分为两种类型:T 细胞受体(TCR)T 细胞疗法和 CAR T 细胞疗法。TCR T 细胞疗法是利用患者自身的 TCR 来识别肿瘤相关抗原(TAA),从而激活和扩增具有特异性识别能力的 T 细胞。CAR T 细胞疗法是利用基因工程技术将一个识别肿瘤相关抗原的单链抗体(scFv)与一个共刺激分子(如 CD28 或 4-1BB)融合到一个 T 细胞受体的胞内结构域,从而构建成一个 CAR,CAR T 细胞可以特异性地识别肿瘤细胞表面的抗原,并且通过共刺激信号增强自身的激活和扩增。

过继性 T 细胞疗法的疗效可以受到外在因素和内在抑制性检查点的抑制信号的限制。靶向基因编辑具有克服这些限制和增强 T 细胞治疗功能的潜力。在这里,我们在不同的免疫抑制条件下进行了多次全基因组 CRISPR 敲除筛选,以鉴定可以靶向以防止 T 细胞功能障碍的基因。这些筛选集中在 RASA2 上,RASA2 是一种 RAS GTPase 激活蛋白(RasGAP),我们将其鉴定为人类 T 细胞中的信号检查点,它在急性 T 细胞受体刺激后下调,并且可以随着慢性抗原暴露而逐渐增加。RASA2 的缺失增强了 MAPK 信号和嵌合抗原受体(CAR)T 细胞对靶抗原的细胞毒性活性。体外重复肿瘤抗原刺激显示,与对照细胞相比,RASA2 缺陷型 T 细胞在激活、细胞因子产生和代谢活性方面表现出增加,并且在持续的癌细胞杀伤中表现出明显的优势。在白血病的小鼠模型中,RASA2 敲除的 CAR T 细胞在骨髓中的竞争适应性优于对照细胞。在 TCR 和 CAR T 细胞治疗的多种临床前模型中,RASA2 的缺失延长了用液体或实体肿瘤异种移植的小鼠的存活时间。

总之,我们的研究结果强调了 RASA2 作为一种有前途的靶点,可以增强癌症治疗中 T 细胞疗法的持久性和效应功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/2a1c13155767/41586_2022_5126_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/06ab777f4bf8/41586_2022_5126_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/f1170627232f/41586_2022_5126_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/495dd031af71/41586_2022_5126_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/a82ad565f3e9/41586_2022_5126_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/30c2deec4abf/41586_2022_5126_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/c935b4ba7850/41586_2022_5126_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/4fe3205e35d2/41586_2022_5126_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/9fd869fd6f87/41586_2022_5126_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/39904570d591/41586_2022_5126_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/485ee2646b5a/41586_2022_5126_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/b62d0b3e32c4/41586_2022_5126_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/e96ffcf0ae33/41586_2022_5126_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/b38cb0724cf2/41586_2022_5126_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/2a1c13155767/41586_2022_5126_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/06ab777f4bf8/41586_2022_5126_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/f1170627232f/41586_2022_5126_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/495dd031af71/41586_2022_5126_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/a82ad565f3e9/41586_2022_5126_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/30c2deec4abf/41586_2022_5126_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/c935b4ba7850/41586_2022_5126_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/4fe3205e35d2/41586_2022_5126_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/9fd869fd6f87/41586_2022_5126_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/39904570d591/41586_2022_5126_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/485ee2646b5a/41586_2022_5126_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/b62d0b3e32c4/41586_2022_5126_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/e96ffcf0ae33/41586_2022_5126_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/b38cb0724cf2/41586_2022_5126_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c705/9433322/2a1c13155767/41586_2022_5126_Fig14_ESM.jpg

相似文献

[1]
RASA2 ablation in T cells boosts antigen sensitivity and long-term function.

Nature. 2022-9

[2]
Enhanced Cancer Immunotherapy by Chimeric Antigen Receptor-Modified T Cells Engineered to Secrete Checkpoint Inhibitors.

Clin Cancer Res. 2017-9-14

[3]
CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells.

Sci Rep. 2017-4-7

[4]
Prolonged Persistence of Chimeric Antigen Receptor (CAR) T Cell in Adoptive Cancer Immunotherapy: Challenges and Ways Forward.

Front Immunol. 2020-4-22

[5]
Blocking CD38-driven fratricide among T cells enables effective antitumor activity by CD38-specific chimeric antigen receptor T cells.

J Genet Genomics. 2019-8-13

[6]
NR4A ablation improves mitochondrial fitness for long persistence in human CAR-T cells against solid tumors.

J Immunother Cancer. 2024-8-16

[7]
Advances in CAR T cell therapy: antigen selection, modifications, and current trials for solid tumors.

Front Immunol. 2025-1-6

[8]
Nanobody-based chimeric antigen receptor T cells designed by CRISPR/Cas9 technology for solid tumor immunotherapy.

Signal Transduct Target Ther. 2021-2-25

[9]
TALEN-edited allogeneic inducible dual CAR T cells enable effective targeting of solid tumors while mitigating off-tumor toxicity.

Mol Ther. 2024-11-6

[10]
A novel chimeric antigen receptor redirecting T-cell specificity towards CD26 cancer cells.

Leukemia. 2021-1

引用本文的文献

[1]
CRISPR tools for T cells: targeting the genome, epigenome, and transcriptome.

Trends Cancer. 2025-8-28

[2]
Genome-wide CRISPR screens identify critical targets to enhance CAR-NK cell antitumor potency.

Cancer Cell. 2025-8-18

[3]
Manufacturing of CRISPR-edited primary mouse CAR T cells for cancer immunotherapy.

Nat Protoc. 2025-7-25

[4]
[Advances in the application strategies of CRISPR/Cas9 technology in chimeric antigen receptor T cell therapy for hematological malignancies].

Zhonghua Xue Ye Xue Za Zhi. 2025-5-14

[5]
CAR-T cell therapy for cancer: current challenges and future directions.

Signal Transduct Target Ther. 2025-7-4

[6]
Current Advances and Challenges in CAR-T Therapy for Hematological and Solid Tumors.

Immunotargets Ther. 2025-6-27

[7]
Live-cell analyses with unsegmented images to study cancer cell response to modified T cell therapy.

bioRxiv. 2025-6-7

[8]
Intentional heterogeneity in autologous cell-based gene therapies: strategic considerations for first-in-human trials.

J Immunother Cancer. 2025-6-5

[9]
Targeting Regnase-1 unleashes CAR T cell antitumor activity for osteosarcoma and creates a proinflammatory tumor microenvironment.

bioRxiv. 2025-5-23

[10]
Affinity-matured CD72-targeting Nanobody CAR T-cells Enhance Elimination of Antigen-Low B-cell Malignancies.

bioRxiv. 2025-5-15

本文引用的文献

[1]
Modular design of synthetic receptors for programmed gene regulation in cell therapies.

Cell. 2022-4-14

[2]
CRISPR activation and interference screens decode stimulation responses in primary human T cells.

Science. 2022-2-4

[3]
Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity.

Sci Transl Med. 2021-11-17

[4]
Adenosine/TGFβ axis in regulation of mammary fibroblast functions.

PLoS One. 2021

[5]
Integrated analysis of multimodal single-cell data.

Cell. 2021-6-24

[6]
SynNotch CAR circuits enhance solid tumor recognition and promote persistent antitumor activity in mouse models.

Sci Transl Med. 2021-4-28

[7]
In vivo CD8 T cell CRISPR screening reveals control by Fli1 in infection and cancer.

Cell. 2021-3-4

[8]
Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen.

Nat Immunol. 2020-7-13

[9]
CRISPR screen in regulatory T cells reveals modulators of Foxp3.

Nature. 2020-4-29

[10]
Tuning the Antigen Density Requirement for CAR T-cell Activity.

Cancer Discov. 2020-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索