Suppr超能文献

SkinNet-16:一种用于识别良性和恶性皮肤病变的深度学习方法。

SkinNet-16: A deep learning approach to identify benign and malignant skin lesions.

作者信息

Ghosh Pronab, Azam Sami, Quadir Ryana, Karim Asif, Shamrat F M Javed Mehedi, Bhowmik Shohag Kumar, Jonkman Mirjam, Hasib Khan Md, Ahmed Kawsar

机构信息

Department of Computer Science (CS), Lakehead University, Thunder Bay, ON, Canada.

College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT, Australia.

出版信息

Front Oncol. 2022 Aug 8;12:931141. doi: 10.3389/fonc.2022.931141. eCollection 2022.

Abstract

Skin cancer these days have become quite a common occurrence especially in certain geographic areas such as Oceania. Early detection of such cancer with high accuracy is of utmost importance, and studies have shown that deep learning- based intelligent approaches to address this concern have been fruitful. In this research, we present a novel deep learning- based classifier that has shown promise in classifying this type of cancer on a relevant preprocessed dataset having important features pre-identified through an effective feature extraction method. Skin cancer in modern times has become one of the most ubiquitous types of cancer. Accurate identification of cancerous skin lesions is of vital importance in treating this malady. In this research, we employed a deep learning approach to identify benign and malignant skin lesions. The initial dataset was obtained from Kaggle before several preprocessing steps for hair and background removal, image enhancement, selection of the region of interest (ROI), region-based segmentation, morphological gradient, and feature extraction were performed, resulting in histopathological images data with 20 input features based on geometrical and textural features. A principle component analysis (PCA)-based feature extraction technique was put into action to reduce the dimensionality to 10 input features. Subsequently, we applied our deep learning classifier, SkinNet-16, to detect the cancerous lesion accurately at a very early stage. The highest accuracy was obtained with the Adamax optimizer with a learning rate of 0.006 from the neural network-based model developed in this study. The model also delivered an impressive accuracy of approximately 99.19%.

摘要

如今,皮肤癌已相当常见,尤其是在某些地理区域,如大洋洲。高精度地早期检测此类癌症至关重要,研究表明,基于深度学习的智能方法在解决这一问题上卓有成效。在本研究中,我们提出了一种新型的基于深度学习的分类器,该分类器在一个经过预处理的相关数据集上对这类癌症进行分类时已展现出前景,该数据集通过一种有效的特征提取方法预先识别出了重要特征。现代皮肤癌已成为最普遍的癌症类型之一。准确识别皮肤癌性病变对于治疗这种疾病至关重要。在本研究中,我们采用深度学习方法来识别良性和恶性皮肤病变。初始数据集来自Kaggle,然后进行了几个预处理步骤,包括去除毛发和背景、图像增强、感兴趣区域(ROI)选择、基于区域的分割、形态学梯度和特征提取,从而得到了基于几何和纹理特征的具有20个输入特征的组织病理学图像数据。采用基于主成分分析(PCA)的特征提取技术将维度降至10个输入特征。随后,我们应用我们的深度学习分类器SkinNet - 16在非常早期阶段准确检测癌性病变。使用本研究中开发的基于神经网络的模型,采用学习率为0.006的Adamax优化器时获得了最高准确率。该模型还实现了约99.19%的令人印象深刻的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/222b/9395205/a36c6023f4da/fonc-12-931141-g001.jpg

相似文献

1
SkinNet-16: A deep learning approach to identify benign and malignant skin lesions.
Front Oncol. 2022 Aug 8;12:931141. doi: 10.3389/fonc.2022.931141. eCollection 2022.
2
Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.
Curr Med Imaging. 2020;16(5):513-533. doi: 10.2174/1573405615666190129120449.
5
A Deep Learning Approach to Skin Cancer Detection in Dermoscopy Images.
J Biomed Phys Eng. 2020 Dec 1;10(6):801-806. doi: 10.31661/jbpe.v0i0.2004-1107. eCollection 2020 Dec.
7
Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.
Comput Methods Programs Biomed. 2019 Aug;177:17-30. doi: 10.1016/j.cmpb.2019.05.010. Epub 2019 May 15.
9
Skin Lesion Detection Using Hand-Crafted and DL-Based Features Fusion and LSTM.
Diagnostics (Basel). 2022 Nov 28;12(12):2974. doi: 10.3390/diagnostics12122974.
10
Preprocessing Effects on Performance of Skin Lesion Saliency Segmentation.
Diagnostics (Basel). 2022 Jan 29;12(2):344. doi: 10.3390/diagnostics12020344.

本文引用的文献

1
Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images.
Bioengineering (Basel). 2022 Feb 27;9(3):97. doi: 10.3390/bioengineering9030097.
2
3
InSiNet: a deep convolutional approach to skin cancer detection and segmentation.
Med Biol Eng Comput. 2022 Mar;60(3):643-662. doi: 10.1007/s11517-021-02473-0. Epub 2022 Jan 13.
4
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.
5
A Deep Learning Approach to Skin Cancer Detection in Dermoscopy Images.
J Biomed Phys Eng. 2020 Dec 1;10(6):801-806. doi: 10.31661/jbpe.v0i0.2004-1107. eCollection 2020 Dec.
7
A Novel Fuzzy Multilayer Perceptron (F-MLP) for the Detection of Irregularity in Skin Lesion Border Using Dermoscopic Images.
Front Med (Lausanne). 2020 Jul 7;7:297. doi: 10.3389/fmed.2020.00297. eCollection 2020.
8
Commentary: The problem of class imbalance in biomedical data.
J Thorac Cardiovasc Surg. 2021 Jun;161(6):1940-1941. doi: 10.1016/j.jtcvs.2020.06.052. Epub 2020 Jun 29.
9
The Possibility of Deep Learning-Based, Computer-Aided Skin Tumor Classifiers.
Front Med (Lausanne). 2019 Aug 27;6:191. doi: 10.3389/fmed.2019.00191. eCollection 2019.
10
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验