Suppr超能文献

医学影像模态与人工智能在视网膜疾病早期检测、诊断及分级中的作用:一项综述

The Role of Medical Image Modalities and AI in the Early Detection, Diagnosis and Grading of Retinal Diseases: A Survey.

作者信息

Saleh Gehad A, Batouty Nihal M, Haggag Sayed, Elnakib Ahmed, Khalifa Fahmi, Taher Fatma, Mohamed Mohamed Abdelazim, Farag Rania, Sandhu Harpal, Sewelam Ashraf, El-Baz Ayman

机构信息

Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.

Electronics and Communications Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt.

出版信息

Bioengineering (Basel). 2022 Aug 4;9(8):366. doi: 10.3390/bioengineering9080366.

Abstract

Traditional dilated ophthalmoscopy can reveal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), diabetic macular edema (DME), retinal tear, epiretinal membrane, macular hole, retinal detachment, retinitis pigmentosa, retinal vein occlusion (RVO), and retinal artery occlusion (RAO). Among these diseases, AMD and DR are the major causes of progressive vision loss, while the latter is recognized as a world-wide epidemic. Advances in retinal imaging have improved the diagnosis and management of DR and AMD. In this review article, we focus on the variable imaging modalities for accurate diagnosis, early detection, and staging of both AMD and DR. In addition, the role of artificial intelligence (AI) in providing automated detection, diagnosis, and staging of these diseases will be surveyed. Furthermore, current works are summarized and discussed. Finally, projected future trends are outlined. The work done on this survey indicates the effective role of AI in the early detection, diagnosis, and staging of DR and/or AMD. In the future, more AI solutions will be presented that hold promise for clinical applications.

摘要

传统的散瞳检眼镜检查可发现多种疾病,如年龄相关性黄斑变性(AMD)、糖尿病视网膜病变(DR)、糖尿病性黄斑水肿(DME)、视网膜裂孔、视网膜前膜、黄斑裂孔、视网膜脱离、色素性视网膜炎、视网膜静脉阻塞(RVO)和视网膜动脉阻塞(RAO)。在这些疾病中,AMD和DR是导致视力渐进性丧失的主要原因,而DR被认为是一种全球性的流行病。视网膜成像技术的进步改善了DR和AMD的诊断与管理。在这篇综述文章中,我们重点关注用于准确诊断、早期检测以及对AMD和DR进行分期的多种成像模式。此外,还将探讨人工智能(AI)在这些疾病的自动检测、诊断和分期方面的作用。此外,对当前的研究工作进行了总结和讨论。最后,概述了预计的未来趋势。本次调查所做的工作表明了AI在DR和/或AMD的早期检测、诊断和分期中的有效作用。未来,将会出现更多有望应用于临床的AI解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a94d/9405367/d85a5b478d7f/bioengineering-09-00366-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验