Suppr超能文献

新冠病毒病的代谢组学标志物取决于采集批次。

Metabolomics Markers of COVID-19 Are Dependent on Collection Wave.

作者信息

Lewis Holly-May, Liu Yufan, Frampas Cecile F, Longman Katie, Spick Matt, Stewart Alexander, Sinclair Emma, Kasar Nora, Greener Danni, Whetton Anthony D, Barran Perdita E, Chen Tao, Dunn-Walters Deborah, Skene Debra J, Bailey Melanie J

机构信息

Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK.

Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.

出版信息

Metabolites. 2022 Jul 30;12(8):713. doi: 10.3390/metabo12080713.

Abstract

The effect of COVID-19 infection on the human metabolome has been widely reported, but to date all such studies have focused on a single wave of infection. COVID-19 has generated numerous waves of disease with different clinical presentations, and therefore it is pertinent to explore whether metabolic disturbance changes accordingly, to gain a better understanding of its impact on host metabolism and enable better treatments. This work used a targeted metabolomics platform (Biocrates Life Sciences) to analyze the serum of 164 hospitalized patients, 123 with confirmed positive COVID-19 RT-PCR tests and 41 providing negative tests, across two waves of infection. Seven COVID-19-positive patients also provided longitudinal samples 2-7 months after infection. Changes to metabolites and lipids between positive and negative patients were found to be dependent on collection wave. A machine learning model identified six metabolites that were robust in diagnosing positive patients across both waves of infection: TG (22:1_32:5), TG (18:0_36:3), glutamic acid (Glu), glycolithocholic acid (GLCA), aspartic acid (Asp) and methionine sulfoxide (Met-SO), with an accuracy of 91%. Although some metabolites (TG (18:0_36:3) and Asp) returned to normal after infection, glutamic acid was still dysregulated in the longitudinal samples. This work demonstrates, for the first time, that metabolic dysregulation has partially changed over the course of the pandemic, reflecting changes in variants, clinical presentation and treatment regimes. It also shows that some metabolic changes are robust across waves, and these can differentiate COVID-19-positive individuals from controls in a hospital setting. This research also supports the hypothesis that some metabolic pathways are disrupted several months after COVID-19 infection.

摘要

新冠病毒(COVID-19)感染对人体代谢组的影响已有广泛报道,但迄今为止,所有此类研究都集中在单一感染波次上。COVID-19引发了多波具有不同临床表现的疾病,因此,探讨代谢紊乱是否相应变化,以更好地了解其对宿主代谢的影响并实现更好的治疗,是很有必要的。这项研究使用了一个靶向代谢组学平台(百泰克生命科学公司),对164名住院患者的血清进行分析,其中123名COVID-19逆转录聚合酶链反应(RT-PCR)检测呈阳性,41名检测呈阴性,涵盖两个感染波次。7名COVID-19阳性患者还在感染后2至7个月提供了纵向样本。研究发现,阳性和阴性患者之间代谢物和脂质的变化取决于采集波次。一个机器学习模型识别出六种在两波感染中都能可靠诊断阳性患者的代谢物:甘油三酯(TG,22:1_32:5)、甘油三酯(TG,18:0_36:3)、谷氨酸(Glu)、甘氨石胆酸(GLCA)、天冬氨酸(Asp)和甲硫氨酸亚砜(Met-SO),准确率达91%。尽管一些代谢物(TG,18:0_36:3和Asp)在感染后恢复正常,但谷氨酸在纵向样本中仍存在失调。这项研究首次表明,在疫情期间,代谢失调已部分发生变化,这反映了病毒变体、临床表现和治疗方案的变化。研究还表明,一些代谢变化在各波次中都很稳定,并且这些变化能够在医院环境中将COVID-19阳性个体与对照组区分开来。这项研究还支持了这样一种假设,即COVID-19感染数月后,一些代谢途径会受到破坏。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c43/9415837/10f37eb1c0d7/metabolites-12-00713-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验