Marcos-Madrazo Aitor, Casado-Coterillo Clara, Iniesta Jesús, Irabien Angel
Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain.
Department of Physical Chemistry, Institute of Electrochemistry, Universidad de Alicante, Av. Raspeig s/n, 03080 Alicante, Spain.
Membranes (Basel). 2022 Aug 15;12(8):783. doi: 10.3390/membranes12080783.
This work explores the potential of novel renewable materials in electrode fabrication for the electrochemical conversion of carbon dioxide (CO) to ethylene in alkaline media. In this regard, the use of the renewable chitosan (CS) biopolymer as ion-exchange binder of the copper (Cu) electrocatalyst nanoparticles (NPs) is compared with commercial anion-exchange binders Sustainion and Fumion on the fabrication of gas diffusion electrodes (GDEs) for the electrochemical reduction of carbon dioxide (COR) in an alkaline medium. They were tested in membrane electrode assemblies (MEAs), where selectivity to ethylene (CH) increased when using the Cu:CS GDE compared to the Cu:Sustainion and Cu:Fumion GDEs, respectively, with a Faradaic efficiency (FE) of 93.7% at 10 mA cm and a cell potential of -1.9 V, with a CH production rate of 420 µmol m s for the Cu:CS GDE. Upon increasing current density to 90 mA cm, however, the production rate of the Cu:CS GDE rose to 509 µmol/ms but the FE dropped to 69% due to increasing hydrogen evolution reaction (HER) competition. The control of mass transport limitations by tuning up the membrane overlayer properties in membrane coated electrodes (MCE) prepared by coating a CS-based membrane over the Cu:CS GDE enhanced its selectivity to CH to a FE of 98% at 10 mA cm with negligible competing HER. The concentration of carbon monoxide was below the experimental detection limit irrespective of the current density, with no CO crossover to the anodic compartment. This study suggests there may be potential in sustainable alernatives to fossil-based or perfluorinated materials in ion-exchange membrane and electrode fabrication, which constitute a step forward towards decarbonization in the circular economy perspective.
这项工作探索了新型可再生材料在电极制造中的潜力,用于在碱性介质中将二氧化碳(CO₂)电化学转化为乙烯。在这方面,将可再生的壳聚糖(CS)生物聚合物用作铜(Cu)电催化剂纳米颗粒(NPs)的离子交换粘合剂,与商业阴离子交换粘合剂Sustainion和Fumion在制造用于碱性介质中二氧化碳电化学还原(COR)的气体扩散电极(GDEs)方面进行了比较。它们在膜电极组件(MEAs)中进行了测试,与Cu:Sustainion和Cu:Fumion GDEs相比,使用Cu:CS GDE时对乙烯(C₂H₄)的选择性增加,在10 mA cm⁻²时法拉第效率(FE)为93.7%,电池电位为 -1.9 V,Cu:CS GDE的C₂H₄生成速率为420 µmol m⁻² s⁻¹。然而,当电流密度增加到90 mA cm⁻²时,Cu:CS GDE的生成速率上升到509 µmol/ms,但由于析氢反应(HER)竞争加剧,FE下降到69%。通过调整在Cu:CS GDE上涂覆基于CS的膜制备的膜涂覆电极(MCE)中的膜覆盖层性能来控制传质限制,在10 mA cm⁻²时将其对C₂H₄的选择性提高到FE为98%,且HER竞争可忽略不计。无论电流密度如何,一氧化碳的浓度均低于实验检测限,没有CO渗透到阳极室。这项研究表明,在离子交换膜和电极制造中,基于化石或全氟材料的可持续替代品可能具有潜力,这是朝着循环经济视角下的脱碳迈出的一步。