Suppr超能文献

通过氢等离子体预处理将二氧化碳转化为层数可控的化学气相沉积石墨烯。

Conversion of Carbon Dioxide into Chemical Vapor Deposited Graphene with Controllable Number of Layers via Hydrogen Plasma Pre-Treatment.

作者信息

Seekaew Yotsarayuth, Tammanoon Nantikan, Tuantranont Adisorn, Lomas Tanom, Wisitsoraat Anurat, Wongchoosuk Chatchawal

机构信息

Graphene and Printed Electronics Research Division (GPERD), National Security and Dual-Use Technology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahon Yothin Road, Klong Nueng, Klong Luang, Phathum Thani 12120, Thailand.

Department of Physics, Faculty of Science, Ramkhamhaeng University, Bang Kapi, Bangkok 10240, Thailand.

出版信息

Membranes (Basel). 2022 Aug 18;12(8):796. doi: 10.3390/membranes12080796.

Abstract

In this work, we report the conversion of carbon dioxide (CO) gas into graphene on copper foil by using a thermal chemical vapor deposition (CVD) method assisted by hydrogen (H) plasma pre-treatment. The synthesized graphene has been characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results show the controllable number of layers (two to six layers) of high-quality graphene by adjusting H plasma pre-treatment powers (100-400 W). The number of layers is reduced with increasing H plasma pre-treatment powers due to the direct modification of metal catalyst surfaces. Bilayer graphene can be well grown with H plasma pre-treatment powers of 400 W while few-layer graphene has been successfully formed under H plasma pre-treatment powers ranging from 100 to 300 W. The formation mechanism is highlighted.

摘要

在这项工作中,我们报告了通过氢(H)等离子体预处理辅助的热化学气相沉积(CVD)方法,将二氧化碳(CO)气体转化为铜箔上的石墨烯。合成的石墨烯已通过拉曼光谱、X射线衍射、扫描电子显微镜和透射电子显微镜进行了表征。结果表明,通过调节H等离子体预处理功率(100 - 400 W),可控制高质量石墨烯的层数(两层至六层)。由于金属催化剂表面的直接改性,层数随着H等离子体预处理功率的增加而减少。在400 W的H等离子体预处理功率下可以很好地生长双层石墨烯,而在100至300 W的H等离子体预处理功率范围内成功形成了少层石墨烯。突出了形成机理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d80/9412882/bbb4d0e90442/membranes-12-00796-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验