文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

定量前列腺 MRI 与专家放射科医师对前列腺癌的诊断:单中心初步研究。

Quantib Prostate Compared to an Expert Radiologist for the Diagnosis of Prostate Cancer on mpMRI: A Single-Center Preliminary Study.

机构信息

Department of Radiology, Campus Bio-Medico University, Via Alvaro del Portillo, 00128 Rome, Italy.

Department of Radiology, Sant'Anna Hospital, Via Ravona, San Fermo della Battaglia, 22042 Como, Italy.

出版信息

Tomography. 2022 Aug 13;8(4):2010-2019. doi: 10.3390/tomography8040168.


DOI:10.3390/tomography8040168
PMID:36006066
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9415513/
Abstract

Background: To evaluate the clinical utility of an Artificial Intelligence (AI) radiology solution, Quantib Prostate, for prostate cancer (PCa) lesions detection on multiparametric Magnetic Resonance Images (mpMRI). Methods: Prostate mpMRI exams of 108 patients were retrospectively studied. The diagnostic performance of an expert radiologist (>8 years of experience) and of an inexperienced radiologist aided by Quantib software were compared. Three groups of patients were assessed: patients with positive mpMRI, positive target biopsy, and/or at least one positive random biopsy (group A, 73 patients); patients with positive mpMRI and a negative biopsy (group B, 14 patients), and patients with negative mpMRI who did not undergo biopsy (group-C, 21 patients). Results: In group A, the AI-assisted radiologist found new lesions with positive biopsy correlation, increasing the diagnostic PCa performance when compared with the expert radiologist, reaching an SE of 92.3% and a PPV of 90.1% (vs. 71.7% and 84.4%). In group A, the expert radiologist found 96 lesions on 73 mpMRI exams (17.7% PIRADS3, 56.3% PIRADS4, and 26% PIRADS5). The AI-assisted radiologist found 121 lesions (0.8% PIRADS3, 53.7% PIRADS4, and 45.5% PIRADS5). At biopsy, 33.9% of the lesions were ISUP1, 31.4% were ISUP2, 22% were ISUP3, 10.2% were ISUP4, and 2.5% were ISUP5. In group B, where biopsies were negative, the AI-assisted radiologist excluded three lesions but confirmed all the others. In group-C, the AI-assisted radiologist found 37 new lesions, most of them PIRADS 3, with 32.4% localized in the peripherical zone and 67.6% in the transition zone. Conclusions: Quantib software is a very sensitive tool to use specifically in high-risk patients (high PIRADS and high Gleason score).

摘要

背景:评估人工智能(AI)放射学解决方案 Quantib Prostate 在多参数磁共振成像(mpMRI)上检测前列腺癌(PCa)病变的临床效用。

方法:回顾性研究了 108 例患者的前列腺 mpMRI 检查。比较了一位有 8 年以上经验的专家放射科医生和一位经验不足的放射科医生使用 Quantib 软件的诊断性能。评估了三组患者:mpMRI 阳性、靶向活检阳性和/或至少一次随机活检阳性(A 组,73 例);mpMRI 阳性但活检阴性(B 组,14 例),以及 mpMRI 阴性且未行活检(C 组,21 例)。

结果:在 A 组中,AI 辅助放射科医生发现了与阳性活检相关的新病变,提高了诊断 PCa 的性能,SE 达到 92.3%,PPV 达到 90.1%(相比之下,专家放射科医生为 71.7%和 84.4%)。在 A 组中,专家放射科医生在 73 份 mpMRI 检查中发现了 96 个病变(17.7% PIRADS3,56.3% PIRADS4,和 26% PIRADS5)。AI 辅助放射科医生发现了 121 个病变(0.8% PIRADS3,53.7% PIRADS4,和 45.5% PIRADS5)。在活检中,33.9%的病变为 ISUP1,31.4%为 ISUP2,22%为 ISUP3,10.2%为 ISUP4,和 2.5%为 ISUP5。在 B 组中,活检结果为阴性,AI 辅助放射科医生排除了三个病变,但确认了其余所有病变。在 C 组中,AI 辅助放射科医生发现了 37 个新病变,其中大多数为 PIRADS3,32.4%位于外周区,67.6%位于移行区。

结论:Quantib 软件是一种非常敏感的工具,特别适用于高危患者(高 PIRADS 和高 Gleason 评分)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa8e/9415513/a980ac593131/tomography-08-00168-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa8e/9415513/b25489aadd7e/tomography-08-00168-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa8e/9415513/a980ac593131/tomography-08-00168-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa8e/9415513/b25489aadd7e/tomography-08-00168-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa8e/9415513/a980ac593131/tomography-08-00168-g002a.jpg

相似文献

[1]
Quantib Prostate Compared to an Expert Radiologist for the Diagnosis of Prostate Cancer on mpMRI: A Single-Center Preliminary Study.

Tomography. 2022-8-13

[2]
Bridging the experience gap in prostate multiparametric magnetic resonance imaging using artificial intelligence: A prospective multi-reader comparison study on inter-reader agreement in PI-RADS v2.1, image quality and reporting time between novice and expert readers.

Eur J Radiol. 2023-4

[3]
Biparametric prostate MRI: impact of a deep learning-based software and of quantitative ADC values on the inter-reader agreement of experienced and inexperienced readers.

Radiol Med. 2022-11

[4]
Artificial Intelligence in Magnetic Resonance Imaging-based Prostate Cancer Diagnosis: Where Do We Stand in 2021?

Eur Urol Focus. 2022-3

[5]
Deep-Learning-Based Artificial Intelligence for PI-RADS Classification to Assist Multiparametric Prostate MRI Interpretation: A Development Study.

J Magn Reson Imaging. 2020-11

[6]
Prostate Magnetic Resonance Imaging Interpretation Varies Substantially Across Radiologists.

Eur Urol Focus. 2017-12-7

[7]
Diagnostic pathway of the biopsy-naïve patient suspected for prostate cancer: Real-life scenario when multiparametric Magnetic Resonance Imaging is not centralized.

Prog Urol. 2021-10

[8]
Clinical study of multifactorial diagnosis in prostate biopsy.

Prostate. 2023-11

[9]
Histology core-specific evaluation of the European Society of Urogenital Radiology (ESUR) standardised scoring system of multiparametric magnetic resonance imaging (mpMRI) of the prostate.

BJU Int. 2013-8-13

[10]
Evaluation of a Cascaded Deep Learning-based Algorithm for Prostate Lesion Detection at Biparametric MRI.

Radiology. 2024-5

引用本文的文献

[1]
Practical applications of AI in body imaging.

Abdom Radiol (NY). 2025-6-27

[2]
The added value of artificial intelligence using Quantib Prostate for the detection of prostate cancer at multiparametric magnetic resonance imaging.

Radiol Med. 2025-5-7

[3]
An overview of utilizing artificial intelligence in localized prostate cancer imaging.

Expert Rev Med Devices. 2025-4

[4]
Comparison between Three Radiomics Models and Clinical Nomograms for Prediction of Lymph Node Involvement in PCa Patients Combining Clinical and Radiomic Features.

Cancers (Basel). 2024-7-31

[5]
Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment.

J Hematol Oncol. 2023-11-27

[6]
[Digitalization in urology-challenge and opportunity].

Urologie. 2023-9

[7]
Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers.

Abdom Radiol (NY). 2023-10

[8]
Beyond diagnosis: is there a role for radiomics in prostate cancer management?

Eur Radiol Exp. 2023-3-13

本文引用的文献

[1]
Artificial Intelligence Based Algorithms for Prostate Cancer Classification and Detection on Magnetic Resonance Imaging: A Narrative Review.

Diagnostics (Basel). 2021-5-26

[2]
Quantitative measurements of prostatic zones by MRI and their dependence on prostate size: possible clinical implications in prostate cancer.

Ther Adv Urol. 2021-3-31

[3]
EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent.

Eur Urol. 2021-2

[4]
Hood Technique for Robotic Radical Prostatectomy-Preserving Periurethral Anatomical Structures in the Space of Retzius and Sparing the Pouch of Douglas, Enabling Early Return of Continence Without Compromising Surgical Margin Rates.

Eur Urol. 2021-8

[5]
Expected impact of MRI-related interreader variability on ProScreen prostate cancer screening trial: a pre-trial validation study.

Cancer Imaging. 2020-10-9

[6]
PI-RADS Version 2.1: A Critical Review, From the Special Series on Radiology Reporting and Data Systems.

AJR Am J Roentgenol. 2021-1

[7]
Diagnostic performance of PI-RADS version 2.1 compared to version 2.0 for detection of peripheral and transition zone prostate cancer.

Sci Rep. 2020-9-29

[8]
A radiomics machine learning-based redefining score robustly identifies clinically significant prostate cancer in equivocal PI-RADS score 3 lesions.

Abdom Radiol (NY). 2020-12

[9]
Prostate Magnetic Resonance Imaging, with or Without Magnetic Resonance Imaging-targeted Biopsy, and Systematic Biopsy for Detecting Prostate Cancer: A Cochrane Systematic Review and Meta-analysis.

Eur Urol. 2020-1

[10]
Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings.

PLoS One. 2018-8-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索