Suppr超能文献

超越诊断:放射组学在前列腺癌管理中是否有作用?

Beyond diagnosis: is there a role for radiomics in prostate cancer management?

机构信息

Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.

Department of Radiology, Jackson Memorial Hospital, University of Miami, Miami, FL, USA.

出版信息

Eur Radiol Exp. 2023 Mar 13;7(1):13. doi: 10.1186/s41747-023-00321-4.

Abstract

The role of imaging in pretreatment staging and management of prostate cancer (PCa) is constantly evolving. In the last decade, there has been an ever-growing interest in radiomics as an image analysis approach able to extract objective quantitative features that are missed by human eye. However, most of PCa radiomics studies have been focused on cancer detection and characterisation. With this narrative review we aimed to provide a synopsis of the recently proposed potential applications of radiomics for PCa with a management-based approach, focusing on primary treatments with curative intent and active surveillance as well as highlighting on recurrent disease after primary treatment. Current evidence is encouraging, with radiomics and artificial intelligence appearing as feasible tools to aid physicians in planning PCa management. However, the lack of external independent datasets for validation and prospectively designed studies casts a shadow on the reliability and generalisability of radiomics models, delaying their translation into clinical practice.Key points• Artificial intelligence solutions have been proposed to streamline prostate cancer radiotherapy planning.• Radiomics models could improve risk assessment for radical prostatectomy patient selection.• Delta-radiomics appears promising for the management of patients under active surveillance.• Radiomics might outperform current nomograms for prostate cancer recurrence risk assessment.• Reproducibility of results, methodological and ethical issues must still be faced before clinical implementation.

摘要

影像学在前列腺癌(PCa)的术前分期和管理中的作用一直在不断发展。在过去的十年中,人们对放射组学作为一种能够提取人类肉眼错过的客观定量特征的图像分析方法越来越感兴趣。然而,大多数 PCa 放射组学研究都集中在癌症的检测和特征描述上。通过本次叙述性综述,我们旨在基于管理方法,对放射组学在 PCa 中的最新提出的潜在应用进行概述,重点关注有治愈意图的原发治疗和主动监测以及原发性治疗后复发性疾病。目前的证据令人鼓舞,放射组学和人工智能似乎是辅助医生进行 PCa 管理的可行工具。然而,缺乏外部独立数据集进行验证和前瞻性设计研究,这使得放射组学模型的可靠性和通用性受到质疑,从而延迟了它们向临床实践的转化。关键点:

  • 已经提出了人工智能解决方案来简化前列腺癌放射治疗计划。

  • 放射组学模型可以改善根治性前列腺切除术患者选择的风险评估。

  • 增量放射组学似乎对主动监测患者的管理很有前景。

  • 放射组学在评估前列腺癌复发风险方面可能优于当前的列线图。

  • 在临床实施之前,仍然需要面对结果的可重复性、方法学和伦理问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17c7/10008761/e835dfccbf41/41747_2023_321_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验