University of Maryland.
J Cogn Neurosci. 2023 Mar 1;35(3):349-360. doi: 10.1162/jocn_a_01908.
The Entangled Brain (Pessoa, L., 2002. MIT Press) promotes the idea that we need to understand the brain as a complex, entangled system. Why does the complex systems perspective, one that entails emergent properties, matter for brain science? In fact, many neuroscientists consider these ideas a distraction. We discuss three principles of brain organization that inform the question of the interactional complexity of the brain: (1) massive combinatorial anatomical connectivity; (2) highly distributed functional coordination; and (3) networks/circuits as functional units. To motivate the challenges of mapping structure and function, we discuss neural circuits illustrating the high anatomical and functional interactional complexity typical in the brain. We discuss potential avenues for testing for network-level properties, including those relying on distributed computations across multiple regions. We discuss implications for brain science, including the need to characterize decentralized and heterarchical anatomical-functional organization. The view advocated has important implications for causation, too, because traditional accounts of causality provide poor candidates for explanation in interactionally complex systems like the brain given the distributed, mutual, and reciprocal nature of the interactions. Ultimately, to make progress understanding how the brain supports complex mental functions, we need to dissolve boundaries within the brain-those suggested to be associated with perception, cognition, action, emotion, motivation-as well as outside the brain, as we bring down the walls between biology, psychology, mathematics, computer science, philosophy, and so on.
《纠缠的大脑》(Pessoa, L., 2002. MIT 出版社)提出,我们需要将大脑理解为一个复杂的、纠缠的系统。为什么复杂系统的观点,包括涌现的属性,对脑科学很重要?事实上,许多神经科学家认为这些想法是一种干扰。我们讨论了三个大脑组织的原则,这些原则为大脑的交互复杂性问题提供了信息:(1)大量组合的解剖连接;(2)高度分布式的功能协调;(3)网络/电路作为功能单元。为了说明映射结构和功能的挑战,我们讨论了神经回路,这些回路说明了大脑中典型的高解剖和功能交互复杂性。我们讨论了测试网络级属性的潜在途径,包括那些依赖于多个区域分布式计算的途径。我们讨论了对脑科学的影响,包括需要描述去中心化和异层次的解剖-功能组织。所倡导的观点对因果关系也有重要影响,因为传统的因果关系解释在像大脑这样的交互复杂系统中提供了较差的候选者,因为交互的分布式、相互和互惠性质。最终,为了理解大脑如何支持复杂的心理功能,我们需要在大脑内部——那些与感知、认知、行动、情感、动机相关的部分——以及大脑之外,消除界限,因为我们正在打破生物学、心理学、数学、计算机科学、哲学等学科之间的壁垒。