Suppr超能文献

通过胶体CdS纳米片上的晶面分辨氧化还原活性位点实现高效、选择性的CO光还原

Efficient, Selective CO Photoreduction Enabled by Facet-Resolved Redox-Active Sites on Colloidal CdS Nanosheets.

作者信息

Wang Nianfang, Cheong Seokhyeon, Yoon Da-Eun, Lu Pan, Lee Hyunjoo, Lee Young Kuk, Park Young-Shin, Lee Doh C

机构信息

Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy & Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.

出版信息

J Am Chem Soc. 2022 Sep 21;144(37):16974-16983. doi: 10.1021/jacs.2c06164. Epub 2022 Aug 25.

Abstract

Advances in nanotechnology have enabled precise design of catalytic sites for CO photoreduction, pushing product selectivity to near unity. However, activity of most nanostructured photocatalysts remains underwhelming due to fast recombination of photogenerated electron-hole pairs and sluggish hole transfer. To address these issues, we construct colloidal CdS nanosheets (NSs) with the large basal planes terminated by S atomic layers as intrinsic photocatalysts (CdS-S NSs). Experimental investigation reveals that the S termination endows ultrathin CdS-S NSs with facet-resolved redox-catalytic sites: oxidation occurs on S-terminated large basal facets and reduction happens on side facets. Such an allocation of redox sites not only promotes spatial separation of photoinduced electrons and holes but also facilitates balanced extraction of holes and electrons by shortening the hole diffusion distance along the (001) direction of the ultrathin NSs. Consequently, the CdS-S NSs exhibit superb performance for photocatalytic CO-to-CO conversion, which was verified by the isotope-labeled experiments to be a record-breaking performance: a CO selectivity of 99%, a CO formation rate of 2.13 mol g h, and an effective apparent quantum efficiency of 42.1% under the irradiation (340 to 450 nm) of a solar simulator (AM 1.5G). The breakthrough performance achieved in this work provides novel insights into the precise design of nanostructures for selective and efficient CO photoreduction.

摘要

纳米技术的进步使得用于光催化还原CO的催化位点能够精确设计,将产物选择性提高到接近100%。然而,由于光生电子-空穴对的快速复合以及空穴转移缓慢,大多数纳米结构光催化剂的活性仍然不尽人意。为了解决这些问题,我们制备了以S原子层终止大基面的胶体CdS纳米片(NSs)作为本征光催化剂(CdS-S NSs)。实验研究表明,S端赋予超薄CdS-S NSs具有面分辨的氧化还原催化位点:氧化发生在S端终止的大基面上,还原发生在侧面。这种氧化还原位点的分布不仅促进了光生电子和空穴的空间分离,而且通过缩短沿超薄NSs(001)方向的空穴扩散距离,促进了空穴和电子的平衡提取。因此,CdS-S NSs在光催化CO转化为CO方面表现出优异的性能,同位素标记实验证实这是一项破纪录的性能:在太阳模拟器(AM 1.5G)照射(340至450 nm)下,CO选择性为99%,CO生成速率为2.13 mol g h,有效表观量子效率为42.1%。这项工作中取得的突破性性能为选择性和高效CO光还原的纳米结构精确设计提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验