Suppr超能文献

啮齿动物和人类疟原虫的混合分离群体连锁图谱分析。

Bulk segregant linkage mapping for rodent and human malaria parasites.

作者信息

Li Xue, Kumar Sudhir, Brenneman Katelyn Vendrely, Anderson Tim J C

机构信息

Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA.

Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.

出版信息

Parasitol Int. 2022 Dec;91:102653. doi: 10.1016/j.parint.2022.102653. Epub 2022 Aug 23.

Abstract

In 2005 Richard Carter's group surprised the malaria genetics community with an elegant approach to rapidly mapping the genetic basis of phenotypic traits in rodent malaria parasites. This approach, which he termed "linkage group selection", utilized bulk pools of progeny, rather than individual clones, and exploited simple selection schemes to identify genome regions underlying resistance to drug treatment (or other phenotypes). This work was the first application of "bulk segregant" methodologies for genetic mapping in microbes: this approach is now widely used in yeast, and across multiple recombining pathogens ranging from Aspergillus fungi to Schistosome parasites. Genetic crosses of human malaria parasites (for which Richard Carter was also a pioneer) can now be conducted in humanized mice, providing new opportunities for exploiting bulk segregant approaches for a wide variety of malaria parasite traits. We review the application of bulk segregant approaches to mapping malaria parasite traits and suggest additional developments that may further expand the utility of this powerful approach.

摘要

2005年,理查德·卡特的团队采用了一种巧妙的方法,迅速绘制出啮齿动物疟原虫表型性状的遗传基础,这令疟疾遗传学领域的研究人员感到惊讶。他将这种方法称为“连锁群选择”,该方法利用子代的混合群体而非单个克隆,并采用简单的选择方案来识别药物治疗抗性(或其他表型)背后的基因组区域。这项工作是“混合分离群体”方法在微生物遗传图谱绘制中的首次应用:这种方法现在已广泛应用于酵母以及从曲霉菌到血吸虫等多种重组病原体中。人类疟原虫的遗传杂交(理查德·卡特也是这方面的先驱)现在可以在人源化小鼠中进行,这为利用混合分离群体方法研究各种疟原虫性状提供了新机会。我们回顾了混合分离群体方法在疟原虫性状图谱绘制中的应用,并提出了可能进一步扩展这种强大方法效用的其他发展方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d43/11972598/07977003f655/nihms-2068624-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验