文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

合成和修饰均一的 PEG-奈立膦酸盐修饰的磁性纳米颗粒可延长其在小鼠临床前模型中的血液循环和生物分布时间。

Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model.

机构信息

Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic.

Center of Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Salmovská 3, 120 00, Prague 2, Czech Republic.

出版信息

Sci Rep. 2019 Jul 24;9(1):10765. doi: 10.1038/s41598-019-47262-w.


DOI:10.1038/s41598-019-47262-w
PMID:31341232
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6656745/
Abstract

Magnetite (FeO) nanoparticles with uniform sizes of 10, 20, and 31 nm were prepared by thermal decomposition of Fe(III) oleate or mandelate in a high-boiling point solvent (>320 °C). To render the particles with hydrophilic and antifouling properties, their surface was coated with a PEG-containing bisphosphonate anchoring group. The PEGylated particles were characterized by a range of physicochemical methods, including dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and magnetization measurements. As the particle size increased from 10 to 31 nm, the amount of PEG coating decreased from 28.5 to 9 wt.%. The PEG formed a dense brush-like shell on the particle surface, which prevented particles from aggregating in water and PBS (pH 7.4) and maximized the circulation time in vivo. Magnetic resonance relaxometry confirmed that the PEG-modified FeO nanoparticles had high relaxivity, which increased with increasing particle size. In the in vivo experiments in a mouse model, the particles provided visible contrast enhancement in the magnetic resonance images. Almost 70% of administrated 20-nm magnetic nanoparticles still circulated in the blood stream after four hours; however, their retention in the tumor was rather low, which was likely due to the antifouling properties of PEG.

摘要

通过热分解油酸铁或扁桃酸铁在高沸点溶剂(>320°C)中制备了具有均匀尺寸为 10、20 和 31nm 的磁铁矿(FeO)纳米粒子。为了使颗粒具有亲水性和抗污性,其表面涂覆了含有 PEG 的双膦酸酯锚固基团。通过一系列物理化学方法对 PEG 化颗粒进行了表征,包括动态光散射、透射电子显微镜、热重分析、傅里叶变换红外光谱和磁化测量。随着粒径从 10nm 增加到 31nm,PEG 的涂覆量从 28.5wt%减少到 9wt%。PEG 在颗粒表面形成了致密的刷状壳,防止颗粒在水中和 PBS(pH7.4)中聚集,并使体内循环时间最大化。磁共振弛豫测量证实,PEG 修饰的 FeO 纳米颗粒具有高弛豫率,其随粒径的增加而增加。在小鼠模型的体内实验中,这些颗粒在磁共振图像中提供了可见的对比增强。在四个小时后,给药的 20nm 磁性纳米颗粒中仍有近 70%在血流中循环;然而,它们在肿瘤中的保留率相当低,这可能是由于 PEG 的抗污性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/3541ee496a85/41598_2019_47262_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/991f4675cc7d/41598_2019_47262_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/e74355aea14f/41598_2019_47262_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/642b7d84c4fe/41598_2019_47262_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/eedbd5cbfa2f/41598_2019_47262_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/8832efe32568/41598_2019_47262_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/942afe58d2df/41598_2019_47262_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/60230236f391/41598_2019_47262_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/02873af8ebe3/41598_2019_47262_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/3541ee496a85/41598_2019_47262_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/991f4675cc7d/41598_2019_47262_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/e74355aea14f/41598_2019_47262_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/642b7d84c4fe/41598_2019_47262_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/eedbd5cbfa2f/41598_2019_47262_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/8832efe32568/41598_2019_47262_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/942afe58d2df/41598_2019_47262_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/60230236f391/41598_2019_47262_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/02873af8ebe3/41598_2019_47262_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7627/6656745/3541ee496a85/41598_2019_47262_Fig9_HTML.jpg

相似文献

[1]
Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model.

Sci Rep. 2019-7-24

[2]
Superparamagnetic Fe3O4 Nanoparticles: Synthesis by Thermal Decomposition of Iron(III) Glucuronate and Application in Magnetic Resonance Imaging.

ACS Appl Mater Interfaces. 2016-3-23

[3]
Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.

Biomacromolecules. 2013-9-4

[4]
Tc-bisphosphonate-coated magnetic nanoparticles as potential theranostic nanoagent.

Mater Sci Eng C Mater Biol Appl. 2019-4-13

[5]
Actively-targeted LTVSPWY peptide-modified magnetic nanoparticles for tumor imaging.

Int J Nanomedicine. 2012-7-24

[6]
Enhanced and selective delivery of enzyme therapy to 9L-glioma tumor via magnetic targeting of PEG-modified, β-glucosidase-conjugated iron oxide nanoparticles.

Int J Nanomedicine. 2014-6-10

[7]
Biodistribution and pharmacokinetics of uniform magnetite nanoparticles chemically modified with polyethylene glycol.

Nanoscale. 2013-7-5

[8]
One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI contrast enhancement.

Mater Sci Eng C Mater Biol Appl. 2014-4-28

[9]
Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent.

Drug Dev Ind Pharm. 2010-10

[10]
Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy.

J Colloid Interface Sci. 2017-3-15

引用本文的文献

[1]
Design and Biodistribution of PEGylated Core-Shell X-ray Fluorescent Nanoparticle Contrast Agents.

ACS Appl Mater Interfaces. 2025-5-7

[2]
Current status, challenges and prospects of antifouling materials for oncology applications.

Front Oncol. 2024-5-8

[3]
Modulating cell signalling in vivo with magnetic nanotransducers.

Nat Rev Methods Primers. 2022

[4]
Iron Oxide Nanoparticles in Cancer Treatment: Cell Responses and the Potency to Improve Radiosensitivity.

Pharmaceutics. 2023-9-30

[5]
Multifunctional nanostructures: Intelligent design to overcome biological barriers.

Mater Today Bio. 2023-5-18

[6]
Native Study of the Behaviour of Magnetite Nanoparticles for Hyperthermia Treatment during the Initial Moments of Intravenous Administration.

Pharmaceutics. 2022-12-15

[7]
Influence of Polymer Shell Molecular Weight on Functionalized Iron Oxide Nanoparticles Morphology and In Vivo Biodistribution.

Pharmaceutics. 2022-9-5

[8]
Formation of hydrated PEG layers on magnetic iron oxide nanoflowers shows internal magnetisation dynamics and generates high in-vivo efficacy for MRI and magnetic hyperthermia.

Acta Biomater. 2022-10-15

[9]
Effects of PEG Chain Length on Relaxometric Properties of Iron Oxide Nanoparticles-Based MRI Contrast Agent.

Nanomaterials (Basel). 2022-8-4

[10]
Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications.

J Nanobiotechnology. 2022-6-27

本文引用的文献

[1]
fate of free and encapsulated iron oxide nanoparticles after injection of labelled stem cells.

Nanoscale Adv. 2018-9-25

[2]
Surface-grafted polyethylene glycol conformation impacts the transport of PEG-functionalized liposomes through a tumour extracellular matrix model.

RSC Adv. 2018-2-16

[3]
Gram-Scale Preparation of Iron Oxide Nanoparticles with Renal Clearance Properties for Enhanced -Weighted Magnetic Resonance Imaging.

ACS Appl Bio Mater. 2018-11-19

[4]
New Insight about Biocompatibility and Biodegradability of Iron Oxide Magnetic Nanoparticles: Stereological and In Vivo MRI Monitor.

Sci Rep. 2019-5-9

[5]
Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings.

Sci Rep. 2018-2-1

[6]
Magnetic nanoparticles: recent developments in drug delivery system.

Drug Dev Ind Pharm. 2018-1-25

[7]
Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment.

Mol Clin Oncol. 2017-11

[8]
A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable I-radiolabeled NaYF:Yb/Er@PEG nanoparticles for multimodal in vivo tissue imaging.

Nanoscale. 2017-11-9

[9]
Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics.

Nat Commun. 2017-10-3

[10]
Biomedical applications of nanotechnology.

Biophys Rev. 2017-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索