Suppr超能文献

脑损伤无反应患者的脑电图和事件相关电位评估。

Assessment of electroencephalography and event-related potentials in unresponsive patients with brain injury.

机构信息

National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, PR China, 410008.

National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, PR China, 410008.

出版信息

Neurophysiol Clin. 2022 Oct;52(5):384-393. doi: 10.1016/j.neucli.2022.07.007. Epub 2022 Aug 23.

Abstract

OBJECTIVE

To investigate the predictors of clinical outcomes in unresponsive patients with acquired brain injuries.

METHODS

Patients with coma or disorders of consciousness were enrolled from August 2019 to March 2021. A retrospective analysis of demographics, etiology, clinical score, diagnosis, electroencephalography (EEG), and event-related potential (ERP) data from 1 week to 2 months after coma onset was conducted. Findings were assessed for predicting favorable outcomes at 6 months post-coma, and functional outcomes were determined using the Glasgow Outcome Scale-Extended (GOS-E).

RESULTS

Of 68 patients, 22 patients had a good neurological outcome at 6 months, while 11 died. Univariate analysis showed that motor response (Motor-R; p < 0.001), EEG pattern (p = 0.015), sleep spindles (p = 0.018), EEG reactivity (EEG-R; p < 0.001), mismatch negativity (MMN) amplitude at electrode Fz (FzMMNA; p = 0.001), P3a latency (p = 0.044), and P3a amplitude at electrode Cz (CzP3aA; p < 0.001) were significantly correlated with patient prognosis. Multivariable logistic regression analysis showed that FzMMNA, CzP3aA, EEG-R, and Motor-R were significant independent predictors of a favorable outcome. The sensitivity and specificity of FzMMNA (dichotomized at 1.16 μV) were 86.4% and 58.5%, and of CzP3aA (cut-off value 2.76 μV) were 90.9% and 70.7%, respectively. ERP amplitude (ERP-A), a combination of FzMMNA and CzP3aA, improved prediction accuracy, with an area under the receiver operating characteristic curve (AUC) of 0.884. A model incorporating Motor-R, EEG-R, and ERP-A yielded an outstanding predictive performance (AUC=0.921) for a favorable outcome.

CONCLUSION

ERP-A and the prognostic model resulted in the efficient prediction of a favorable outcome in unresponsive patients.

摘要

目的

研究获得性脑损伤无反应患者临床结局的预测因素。

方法

纳入 2019 年 8 月至 2021 年 3 月期间昏迷或意识障碍的患者。对昏迷后 1 周至 2 个月的人口统计学、病因、临床评分、诊断、脑电图(EEG)和事件相关电位(ERP)数据进行回顾性分析。评估这些发现对昏迷后 6 个月时良好预后的预测价值,并使用格拉斯哥预后量表扩展版(GOS-E)确定功能预后。

结果

在 68 例患者中,22 例在 6 个月时神经功能预后良好,11 例死亡。单因素分析显示,运动反应(Motor-R;p<0.001)、脑电图模式(p=0.015)、睡眠纺锤波(p=0.018)、脑电图反应性(EEG-R;p<0.001)、失匹配负波(MMN)在 Fz 电极处的振幅(FzMMNA;p=0.001)、P3a 潜伏期(p=0.044)和 Cz 电极处的 P3a 振幅(CzP3aA;p<0.001)与患者预后显著相关。多变量逻辑回归分析显示,FzMMNA、CzP3aA、EEG-R 和 Motor-R 是良好预后的显著独立预测因素。FzMMNA(二分类值为 1.16μV)的敏感性和特异性分别为 86.4%和 58.5%,CzP3aA(截断值为 2.76μV)的敏感性和特异性分别为 90.9%和 70.7%。ERP 振幅(ERP-A),即 FzMMNA 和 CzP3aA 的组合,提高了预测准确性,其受试者工作特征曲线下面积(AUC)为 0.884。包含 Motor-R、EEG-R 和 ERP-A 的模型对良好预后的预测效果极佳(AUC=0.921)。

结论

ERP-A 和预后模型可有效预测无反应患者的良好预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验