Gosseries Olivia, Schnakers Caroline, Ledoux Didier, Vanhaudenhuyse Audrey, Bruno Marie-Aurélie, Demertzi Athéna, Noirhomme Quentin, Lehembre Rémy, Damas Pierre, Goldman Serge, Peeters Erika, Moonen Gustave, Laureys Steven
Coma Science Group, Cyclotron Research Center, University of Liège, Belgium.
Funct Neurol. 2011 Jan-Mar;26(1):25-30.
Monitoring the level of consciousness in brain-injured patients with disorders of consciousness is crucial as it provides diagnostic and prognostic information. Behavioral assessment remains the gold standard for assessing consciousness but previous studies have shown a high rate of misdiagnosis. This study aimed to investigate the usefulness of electroencephalography (EEG) entropy measurements in differentiating unconscious (coma or vegetative) from minimally conscious patients. Left fronto-temporal EEG recordings (10-minute resting state epochs) were prospectively obtained in 56 patients and 16 age-matched healthy volunteers. Patients were assessed in the acute (≤1 month post-injury; n=29) or chronic (>1 month post-injury; n=27) stage. The etiology was traumatic in 23 patients. Automated online EEG entropy calculations (providing an arbitrary value ranging from 0 to 91) were compared with behavioral assessments (Coma Recovery Scale-Revised) and outcome. EEG entropy correlated with Coma Recovery Scale total scores (r=0.49). Mean EEG entropy values were higher in minimally conscious (73±19; mean and standard deviation) than in vegetative/unresponsive wakefulness syndrome patients (45±28). Receiver operating characteristic analysis revealed an entropy cut-off value of 52 differentiating acute unconscious from minimally conscious patients (sensitivity 89% and specificity 90%). In chronic patients, entropy measurements offered no reliable diagnostic information. EEG entropy measurements did not allow prediction of outcome. User-independent time-frequency balanced spectral EEG entropy measurements seem to constitute an interesting diagnostic - albeit not prognostic - tool for assessing neural network complexity in disorders of consciousness in the acute setting. Future studies are needed before using this tool in routine clinical practice, and these should seek to improve automated EEG quantification paradigms in order to reduce the remaining false negative and false positive findings.
监测意识障碍的脑损伤患者的意识水平至关重要,因为它能提供诊断和预后信息。行为评估仍是评估意识的金标准,但先前的研究表明误诊率很高。本研究旨在探讨脑电图(EEG)熵测量在区分无意识(昏迷或植物状态)和最低意识患者方面的作用。前瞻性地获取了56例患者和16名年龄匹配的健康志愿者的左侧额颞部EEG记录(10分钟静息期)。患者在急性期(受伤后≤1个月;n = 29)或慢性期(受伤后>1个月;n = 27)接受评估。23例患者的病因是创伤性的。将自动在线EEG熵计算(提供0至91的任意值)与行为评估(昏迷恢复量表修订版)和预后进行比较。EEG熵与昏迷恢复量表总分相关(r = 0.49)。最低意识患者的平均EEG熵值(73±19;均值和标准差)高于植物状态/无反应觉醒综合征患者(45±28)。受试者工作特征分析显示,熵临界值为52可区分急性无意识和最低意识患者(敏感性89%,特异性90%)。在慢性患者中,熵测量未提供可靠的诊断信息。EEG熵测量无法预测预后。用户独立的时频平衡谱EEG熵测量似乎构成了一种有趣的诊断工具——尽管不是预后工具——用于评估急性情况下意识障碍中的神经网络复杂性。在将该工具用于常规临床实践之前,还需要进行进一步的研究,这些研究应致力于改进自动EEG量化范式,以减少剩余的假阴性和假阳性结果。