Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
Brain and Behaviour, Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany.
Neurocrit Care. 2024 Apr;40(2):718-733. doi: 10.1007/s12028-023-01816-z. Epub 2023 Sep 11.
In intensive care unit (ICU) patients with coma and other disorders of consciousness (DoC), outcome prediction is key to decision-making regarding prognostication, neurorehabilitation, and management of family expectations. Current prediction algorithms are largely based on chronic DoC, whereas multimodal data from acute DoC are scarce. Therefore, the Consciousness in Neurocritical Care Cohort Study Using Electroencephalography and Functional Magnetic Resonance Imaging (i.e. CONNECT-ME; ClinicalTrials.gov identifier: NCT02644265) investigates ICU patients with acute DoC due to traumatic and nontraumatic brain injuries, using electroencephalography (EEG) (resting-state and passive paradigms), functional magnetic resonance imaging (fMRI) (resting-state) and systematic clinical examinations.
We previously presented results for a subset of patients (n = 87) concerning prediction of consciousness levels in the ICU. Now we report 3- and 12-month outcomes in an extended cohort (n = 123). Favorable outcome was defined as a modified Rankin Scale score ≤ 3, a cerebral performance category score ≤ 2, and a Glasgow Outcome Scale Extended score ≥ 4. EEG features included visual grading, automated spectral categorization, and support vector machine consciousness classifier. fMRI features included functional connectivity measures from six resting-state networks. Random forest and support vector machine were applied to EEG and fMRI features to predict outcomes. Here, random forest results are presented as areas under the curve (AUC) of receiver operating characteristic curves or accuracy. Cox proportional regression with in-hospital death as a competing risk was used to assess independent clinical predictors of time to favorable outcome.
Between April 2016 and July 2021, we enrolled 123 patients (mean age 51 years, 42% women). Of 82 (66%) ICU survivors, 3- and 12-month outcomes were available for 79 (96%) and 77 (94%), respectively. EEG features predicted both 3-month (AUC 0.79 [95% confidence interval (CI) 0.77-0.82]) and 12-month (AUC 0.74 [95% CI 0.71-0.77]) outcomes. fMRI features appeared to predict 3-month outcome (accuracy 0.69-0.78) both alone and when combined with some EEG features (accuracies 0.73-0.84) but not 12-month outcome (larger sample sizes needed). Independent clinical predictors of time to favorable outcome were younger age (hazard ratio [HR] 1.04 [95% CI 1.02-1.06]), traumatic brain injury (HR 1.94 [95% CI 1.04-3.61]), command-following abilities at admission (HR 2.70 [95% CI 1.40-5.23]), initial brain imaging without severe pathological findings (HR 2.42 [95% CI 1.12-5.22]), improving consciousness in the ICU (HR 5.76 [95% CI 2.41-15.51]), and favorable visual-graded EEG (HR 2.47 [95% CI 1.46-4.19]).
Our results indicate that EEG and fMRI features and readily available clinical data predict short-term outcome of patients with acute DoC and that EEG also predicts 12-month outcome after ICU discharge.
在伴有昏迷和其他意识障碍(DoC)的重症监护病房(ICU)患者中,预后预测是进行预后判断、神经康复和管理家庭期望的关键。目前的预测算法主要基于慢性 DoC,而急性 DoC 的多模态数据则很少。因此,使用脑电图(EEG)(静息状态和被动范式)、功能磁共振成像(fMRI)(静息状态)和系统临床检查的神经危重病意识联合研究(即 CONNECT-ME;ClinicalTrials.gov 标识符:NCT02644265)调查了由于创伤性和非创伤性脑损伤导致急性 DoC 的 ICU 患者。
我们之前报告了一项关于 ICU 中意识水平预测的子组患者(n=87)的结果。现在,我们报告了一个扩展队列(n=123)的 3 个月和 12 个月的结果。有利的结果定义为改良 Rankin 量表评分≤3、脑功能分类评分≤2 和格拉斯哥预后量表扩展评分≥4。EEG 特征包括视觉分级、自动频谱分类和支持向量机意识分类器。fMRI 特征包括六个静息态网络的功能连接测量。随机森林和支持向量机应用于 EEG 和 fMRI 特征以预测结果。在这里,随机森林结果以接受者操作特征曲线的曲线下面积(AUC)或准确性表示。采用住院期间死亡为竞争风险的 Cox 比例风险回归来评估有利于良好结局的独立临床预测因素。
2016 年 4 月至 2021 年 7 月,我们共招募了 123 名患者(平均年龄 51 岁,42%为女性)。在 82 名(66%)存活于 ICU 的患者中,79 名(96%)和 77 名(94%)分别有 3 个月和 12 个月的结果。EEG 特征可预测 3 个月(AUC 0.79[95%置信区间(CI)0.77-0.82])和 12 个月(AUC 0.74[95% CI 0.71-0.77])的结局。fMRI 特征似乎单独预测 3 个月的结局(准确性 0.69-0.78),当与某些 EEG 特征结合时也可预测 3 个月的结局(准确性 0.73-0.84),但不能预测 12 个月的结局(需要更大的样本量)。有利于良好结局的时间的独立临床预测因素包括年龄较小(风险比[HR]1.04[95% CI 1.02-1.06])、创伤性脑损伤(HR 1.94[95% CI 1.04-3.61])、入院时的指令遵循能力(HR 2.70[95% CI 1.40-5.23])、初始脑成像无严重病理发现(HR 2.42[95% CI 1.12-5.22])、在 ICU 中意识改善(HR 5.76[95% CI 2.41-15.51])和良好的视觉分级 EEG(HR 2.47[95% CI 1.46-4.19])。
我们的结果表明,EEG 和 fMRI 特征以及易于获得的临床数据可预测急性 DoC 患者的短期结局,并且 EEG 也可预测 ICU 出院后的 12 个月结局。